
 

 

Introduction 
Sampling in physics-based applications and digital signal processing has long been recognised as an              
essential constraint. The Nyquist-Shannon theorem is the most prominent information theorem that            
prevents aliasing in seismic data (Seibt, 2006). Sampling has to be considered an essential part of a                 
machine learning pipeline to avoid the implicit bias of learnt decision boundaries and joint              
distributions. 
 
Machine Learning algorithms, particularly deep convolutional neural networks (CNN) often learn on            
patches of data. In many applications, the dynamic range of the data is additionally converted from                
32-bit floats to 8-bit integers. This loss of dynamic range often speeds up training of networks and                 
stabilises convergence at the loss of accuracy. However, investigations into precision have shown that              
this effect may be negligible (Holi and Hwang, 1993). Patch-based image training in machine learning               
usually takes smaller windows of data. The ImageNet challenge (Deng et al., 2009) provides 256x256               
pixel images, which sets standards for many machine learning architectures. 
 
Theory 
Seismic traces are often sampled at 4ms and contain several hundred to thousands of samples. The                
Nyquist-Shannon theorem applies to high-frequency bounds only. However, we propose that a lower             
bound has to be adhered to when applying real-valued transformations to data before reconstruction.              
Low-frequency aliasing can be seen as a DC offset, where DC is the value at 0 Hz. This effect has                    
been studied in non-stationary signals in applications such as seismic frequency decomposition            
(Chakraborty and Okaya 1995). 
 
In statistical learning, many applications learn implicit joint distributions of the data. These are often               
approximated by multivariate distributions or transformations that operate solely on real-valued           
signals instead of complex signals (Hirose, 2003). This is equivalent to a mean shift of the data, as                  
well as noise of the mean and may hinder convergence of the algorithms and diminish results.                
Inference on images that can appropriately sample low frequencies, due to a larger size, could lead to                 
non-generalizability of the data due to implicit bias, which is the antithesis of machine learning. 
 
We propose a low-frequency boundary, which follows the Nyquist-Shannon sampling theorem. With            

, where T is the maximum period resolvable in the time series. This is due to the fact that wef ny = 1
2 T                     

treat cutouts of a non-stationary signal as representative of the entire series and therefore, have to infer                 
stationarity within the available bandwidth. 
 
Example: Neural Network - Single Neuron 
Neurons in neural networks are described by the activation , where w is the network         ( w  b )σ · x +        
weights, x is the input data, b is the network bias, and sigma is a non-linear activation function. A                   
common non-linear activation is the rectified linear unit (RELU) . Considering the         (x) max(0, )σ =  x    
inference stage, the network weights w and biases b are fixed, x is the only variable parameter.                 
Learning on a mean-shift of q of an arbitrary distribution over x leads to , which              ( w x q) b )σ · ( +  +    
increases the neuron response by q, weighted by w. At inference, the mean-shift over larger inference                
data disappears, introducing an additional bias of before non-linear activation. This training bias        w · q       
may lead to prediction errors of the neuron and consequently the full neural network. 
 
Example: Dutch F3 Seismic data 
We use a randomly selected trace from the Dutch F3 dataset. The total recording time is 4 seconds                  
with 1001 samples sampled at 4 ms. The sampling interval of 4ms allows for a maximum frequency                 
of 125 Hz. We compare the reconstruction of the signal from the real part of the frequency spectrum                  
for non-overlapping patches. The frequency content of real-valued stationary traces would be similar,             
whether a trace is split into parts or whole. 
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The frequency content in Figure 1 shows that properly tapered data introduces a DC offset and the                 
phase spectrum cannot be reconstructed fully. For a window of 101 samples at 4 ms, we get the lower                   
Nyquist frequency of ~12.5 Hz. A patch of 256 samples at 4ms has the lower bound of ~5 Hz. We                    
propose that a high-pass filter at training may improve convergence. Transfer learning on larger              
patches with fewer epochs then recovers low-frequency information, while keeping training times            
attainable.  
 

 
Figure 1 We present different sizes of cutouts, with 101 and 256 samples respectively. In the middle,                 
the full normalised amplitude spectra are presented. On the right, the according phase spectra are               
presented. On the left, we focus on the frequency content of the amplitude spectra around 0 Hz. The                  
cutouts were Hanning tapered, however, a clear DC offset appears with decreasing patch size. 
 
Conclusions 
We investigate the frequency content in non-overlapping patch-based seismic data. Non-overlapping           
patches may introduce low-frequency noise that translates to a mean-shift of learnt distributions.             
Further investigations into frequency responses of Convolutional Neural Networks (CNN) and the            
computation thereof, which is common in the frequency domain, should be undertaken. The authors              
note that signal processing paradigms apply to image-based CNNs and tapering of time-series before              
Fourier transformation is essential. 
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