
Introduction

Physics in machine learning often relies on transformations of data to beneficial domains and simulating
additional data. Karpatne et al. (2017) show a physics-guided approach to model lake temperatures
with neural networks. Schütt et al. (2017) use deep neural networks to model molecule energies and
de Oliveira et al. (2017) employ a special architecture to capture scatter patterns in high-energy physics.
When building deep learning pipelines, we can make informed choices in data modeling, but also build
neural networks to maximize information gain on the available data. Ulyanov et al. (2018) has shown
that the network architecture itself can be used as prior in machine learning. These approaches translate
well to geoscience, where strong priors are often necessary to inform decisions.

Deep learning has revolutionized machine learning by replacing the feature generation and augmentation
step by learned internal representations of features that maximize information gain. On image data
analysis of these neural network filters have shown close relations to edge filters and color separators
(Grün et al., 2016). Dramsch and Lüthje (2018) have shown that these filters translate well to seismic
data. However, classic feed-forward neural networks do not have the benefit of learning filters. However,
these neural networks benefit from recent improvements for regularization (Ioffe and Szegedy, 2015),
non-saturating and non-vanishing gradients (He et al., 2015), and training on GPUs.

Neural networks for inversion of seismic data have a long history (Roeth and Tarantola, 1994). In
Dramsch et al. (2019) we show the application of a deep multi-layer perceptron for map-based 4D
seismic pressure saturation inversion. In this work we show the information gain of feed-forward multi-
layer perceptron neural networks by including an explicit calculation of the AVO gradient within the
network architecture. It’s exemplary for including domain knowledge as a prior in machine learning.

Method

We build a deep feed-forward network to invert seismic amplitude maps for pressure and saturation
changes. We use the high-level Python framework keras with a tensorflow backend. The neural
network was trained on synthetic data, to subsequently predict field data. The network takes the seismic
input samplewise with near, mid, and far stacks, and pore volume. We inject 20% Gaussian noise to
model the noisier field data directly after the input layer. This is fed to a custom layer that calculates the
PP AVO gradient between far-mid, mid-near, and far-near. The main components are as follows:

Gaussian noise injection

The synthetic model is noise-free. While we get good results on the training data and the modelled test
data, the network does not transfer well to noisy field data. Although the 4D NRMS is very low in the
data set, the sample-wise fluctuations in the field seismic differ significantly from the synthetic data.
We apply additive Gaussian noise with σ = .02 to the seismic inputs separately to simulate independent
fluctuations of the seismic maps. This significantly decreases the training and validation performance
on noise free synthetic data. On field data, however, this enables good transfer of the neural network.

noisy_input = GaussianNoise(0.02)(input_data)

Explicit AVO gradient calculation

The Schiehallion field is a good example of imbalanced learning. We have many samples of pressure
changes ∆P, a good selection of water saturation changes ∆Sw, and very few gas saturation changes
∆Sg. Yet, the changes in gas saturation ∆Sg produce the strongest changes in seismic P wave amplitudes.
Statistically, these can easily be regarded as outliers, and therefore, possibly disregarded by the neural
network. From decades of seismic analysis, we know that the AVO gradient is very good for pressure
saturation separation. We implement an explicit calculation of AVO gradients in the network.

G =
AΘ1 −AΘ0

xΘ1 − xΘ0

, (1)
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where G is the PP AVO gradient, A is the seismic P wave amplitude, x is the offset, and Θ is the angle.

mid_near = Lambda(
lambda inputs: (inputs[0] - inputs[1]) / (10)

)([noisy_mid, noisy_near])

far_mid = Lambda(
lambda inputs: (inputs[0] - inputs[1]) / (10)

)([noisy_far, noisy_mid])

far_near = Lambda(
lambda inputs: (inputs[0] - inputs[1]) / (20)

)([noisy_far, noisy_near])

Encoder-decoder architecture

Subsequently, the four input maps and the three gradient maps are concatenated and fed to an encoder
architecture that condenses the information to an embedding layer z. This layer learns a collection of
Gaussian distributions to represent the noisy input data The decoder samples this variational embedding
layer to calculate the pressure change ∆P, change in water saturation ∆Sw, and gas saturation ∆Sg.

The full architecture is of the encoder-decoder class. The encoder reduces the number of parameters
with each subsequent layer. This forces the network to learn a lossy compression of the input data as
z-vector. The decoder increases the number of nodes per layer toward the output. The network therefore
learns to correlate the low resolution representation with the desired output.

Figure 1 Full Architecture from Dramsch et al. (2019).

Variational Z Vector

The inversion of noisy input benefits from a variational representation of compressed z-vector. The net-
works learns Gaussian distributions in the embedding layer. Therefore, we have to apply the reparametriza-
tion trick outlined in Kingma and Welling (2013) to circumvent the sampling process cannot be learned
by gradient descent. We use the implementation in Chollet (2015) for variational autoencoders.
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Results

Figure 2 Schiehallion 2004 Timestep Seismic data, pore volume and sim2seis results.

In figure 2 we show the 2004 time step of the Schiehallion 4D. Figure 3 contains the inversion result
using the variational encoder decoder architecture. Some coherency in the maps can be seen, but each
map is very noisy and the gas saturation map contains many data points that indicate gas desaturation,
which cannot be confirmed by production data.

Figure 3 Variational Encoder Decoder Architecture Inversion

When we add the gradient, we can clean up some of the misfit in the gas saturation maps ∆Sg. Particu-
larly, the event with the strongest softening in the amplitude maps, is partially reassigned to the pressure
map ∆P. However, the inversion process is still very prone to noise. In figure 5, we show the inversion
results of a AVO-gradient neural network with a noise injection at training of σ = .02. The inversion
maps are very coherent. Noise injection without gradient calculation does not give adequate results.

Figure 4 AVO-Gradient Variational Encoder Decoder Architecture Inversion
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Figure 5 Noiseinjected AVO-Gradient Variational Encoder Decoder Architecture Inversion

Conclusions

We have shown a neural network architecture that incorporates physical domain knowledge to enable
transfer from synthetic to field data. The final inversion result has very good coherency, despite the
network not having any spatial context. While further investigation is necessary, this indicates that
useful information has been learned. This is one example, where bias can be intentionally introduced
into the network architecture to include physics into machine learning.
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