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Abstract—We present a novel 3D warping technique for the
estimation of 4D seismic time-shift. This unsupervised method
provides a diffeomorphic 3D time shift field that includes un-
certainties, therefore it does not need prior time-shift data to
be trained. This results in a widely applicable method in time-
lapse seismic data analysis. We explore the generalization of the
method to unseen data both in the same geological setting and
in a different field, where the generalization error stays constant
and within an acceptable range across test cases. We further
explore upsampling of the warp field from a smaller network to
decrease computational cost and see some deterioration of the
warp field quality as a result.

Index Terms—4D seismic, time-lapse, deep learning, unsuper-
vised learning, 3D time-shift, neural network

I. INTRODUCTION

SEISMIC time-lapse data consists of two 3D reflection
amplitude cubes that represent the subsurface they were

collected from. These cubes are acquired years apart with
expected changes in the subsurface due to e.g. hydrocarbon
production. The differences in the subsurface cause changes in
both amplitudes and velocities, which introduces misalignment
of seismic reflectors. Measuring the misalignment and aligning
these surfaces to obtain a reliable difference cube is one of the
main disciplines in 4D seismic processing.

These time shifts are most commonly obtained by win-
dowed cross-correlation and other statistical or signal pro-
cessing approaches [1]. Considering the recent advances of
machine learning in imaging and domain transfer, we explore
possibilities of alignment with convolutional neural networks.
Machine learning approaches, however, most commonly re-
quire labeled data to find a mapping f(x) = y, with x being
the input data, f being the blackbox algorithm like a neural
network, and y being the labels or target.

A common problem in machine learning for subsurface
science is determining the ground truth. Obtaining information
from the subsurface is often prohibited by cost, and e.g. core
samples are highly localised data that is often altered by the
extraction method as well as the sheer act of unearthing the
sample. Additionally, synthetic data may introduce the inverse
crime [2] of using the same theory to generate and invert data.
Luckily, the physics of medical imaging and inversion is very
similar to geophysics, where methods can be validated and
fine-tuned. The main method discussed in this paper is adapted
from the medical imaging literature.

The lack of ground truths leads to another problem that deep
learning address but do not solve. For classic neural networks,
we need to know a target label dataset, i.e. knowing a prior
warp velocity. In 4D seismic this would mean employing an

established method to obtain time shifts. This would effec-
tively result in abstracting that method in a neural network,
or modelling the warp, which would lead to committing the
inverse crime. Logically, this lead us to explore unsupervised
methods.

We discuss several options for architectures for mapping the
monitor seismic cube to the base seismic cube directly within
the network. This is possible in unsupervised configurations
but depending on the architecture of the network this problem
can be ill-constrained and generate non-physical mappings.
One warranted criticism of deep learning and neural networks
is the lack of explainability and limited interpretability. How-
ever, we employ a deep neural network to obtain warp velocity
vectors, a 3D equivalent of time shifts, for dense deterministic
warping instead of directly obtaining the warped result from
a neural network. This enables us to interpret the warping
vectors and constrain the warp path in addition to the warp
result.

Moreover, we present the first 4D seismic 3D time shift
estimator with uncertainty measures. We achieve this by imple-
menting a variational layer that samples from a Gaussian with
the reparametrization trick [3]. Therefore, we can counteract
some of the influence of noise on the performance of the
network.

II. THEORY

Extracting time shifts from 4D seismic data is most com-
monly done trace-wise (1D), which limits the problem to
depth. This provides sufficient results for simple problems.
However, geologically complex systems and pre-stack time
shifts benefit from obtaining 3D time-shifts. We discuss classi-
cal 3D time-shift extraction methods, we then go on to discuss
relevant deep learning methods. These methods extract time-
shifts with different constraints which we explore. For brevity
we present the results of the best method to date, developed
for the medical domain: VoxelMorph [4].

The goal of both conventional and machine learning meth-
ods is to obtain a warp velocity field u(x, y, z) that ideally
aligns two 3D cubes B and M within given constraints.
That means a sample m[x, y, z] will be aligned by adjusting
m[x+ux, y+uy, z+uz]. In image processing this is considered
”dense alignment” or ”dense warping”, hence we need a dense
vector field to align each sample in the base and the monitor
cube. Generally, u(x, y, z) ∈ R3, which implies interpolation
to obtain the warped result.
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A. Conventional Methods

Most conventional methods in 4D seismic warping focus
on 1D methods [5], which include local 1D cross-correlation,
dynamic time warping [6], optical flow methods and methods
based on Taylor expansion [7]. We do not cover these methods
in detail, but focus on the limited applications of 3D methods
in 4D seismic warping.

1) Local 3D Cross Correlation: Hall et al [8] introduced
local 3D cross-correlation as a method for surface-based image
alignment. The horizon-based nodal cross-correlation results
were then linearly interpolated to full cubes. Hale et al [9]
extended this method to full seismic cubes by calculating the
multi-dimensional cross-correlation windowed by a Gaussian
with a specified radius. The correlation results are normalized
to avoid spurious correlations by amplitude fluctuations and
high-amplitude events. Subsequently the cross-correlation re-
sult is searched for peaks using the following triple sum:

c[ux, uy, uz] =

∞∑

x,y,z=−∞
b[x, y, z] ·m[x+ ux, y+ uy, z+ uz],

(1)
with c being the cross-correlation lag. The computational
complexity of this method is O(Ns ×Nl) with Ns being the
total number of samples and Nl being the total number of
lags.

Stabilization of the results of 3D cross-correlation is ob-
tained by applying spectral whitening of the signals and
smoothing the images with a Gaussian filter without increasing
the computational complexity despite the windowing function
[9].

2) Inversion-based methods: Rickett et al [10] describe
a non-linear inversion approach, with the objective function
being

E = |d− f(m)|2 + |∇x(m)|2 + |∇y(m)|2 + |∇2
z(m)|2 (2)

with m being the model vector, d being the data vector.
The non-linear inversion is constrained by applying the first-
derivative to the spatial dimensions z, y and Laplacian in z
to obtain a smooth solution. Cherrett et al [11] implement
a geostatistical joint inversion that uses the geostatistical
information combined with data constraints as a prior in a
Bayesian inversion scheme.

P (x|geostats, data) ∝ exp
(
−(x− µ)TC−1(x− µ)/2

)

(3)
with C being the posterior covariance matrix, x the sample
mean vector and µ being the posterior mean vector.

B. Machine Learning Methods

The machine learning methods discussed in this section
are imaging based, and therefore rely on recent advances
of convolutional neural networks (CNN) in deep learning.
We discuss different approaches that include supervised and
unsupervised / self-supervised methods. These methods are all
based on convolutional neural networks (CNNs).

CNNs are a type of neural network that is particularly suited
to imaging approaches. They learn arbitrary data-dependent
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Fig. 1. Schematic convolutional neural network. The input layer (yellow) is
convolved with a 3×3 filter that results in a spatially subsampled subsequent
layer that contains the filter responses. This second layer is again convolved
with a 3×3 filter to obtain the next layer. Subsampling is achieved by strided
convolutions or pooling.

filters that are optimized based on the chosen objective via
gradient descent. These filters can operate on real images,
medical images, or seismic data alike. The convolutional filter
benefits from weight sharing, making the operation efficient
and particularly suited to GPUs or specialized hardware. In
Figure 1 we show a schematic image, that is convolved with
moving 3x3 filters repeatedly to obtain a spatially down-
sampled representation. These convolutional layers in neural
networks can be arranged in different architectures that we
explore in the following analysis of prior methods in image
alignment.

1) Supervised CNNs: Supervised end-to-end CNNs rely on
reliable ground truth, including the time shifts being available.
Training a supervised machine learning system requires both a
data vector x and a target vector y to train the blackbox system
f(x) ⇒ y. This means that we have to provide extracted
time-shifts from other methods, which implicitly introduce
assumptions from that method into the supervised model.
Alternatively, expensive synthetic models would be required.

The supervised methods are largely based on Optical Flow
methods [12], [13]. The FlowNet [12] architecture is based on
an Encoder-Decoder CNN architecture. Particularly, FlowNet
has reached wide reception and several modifications were
implemented, namely FlowNet 2.0 [14] improving accuracy,
and LiteFlowNet [15] reducing computational cost. SpyNet
[13] and PWC-Net [16] implement stacked coarse-to-fine
networks for residual flow correction. PatchBatch [17] and
deep discrete flow [18] implement Siamese Networks [19] to
estimate optical flow. Alternatively, DeepFlow [20] attempts
to extract large displacements optical flow using pyramids
of SIFT features. These methods introduce varying types of
network architectures, optimizations, and losses that attempt
to solve the optical flow problem in computer vision.

2) Unsupervised CNNs: Unsupervised or self-supervised
CNNs only rely on the data, relaxing the necessity for
ground truth time shifts. In [21] the FlowNet architecture is
reformulated into an unsupervised optical flow estimator with
bidirectional census loss called UnFlow. The UnFlow network
relies on the smooth estimation of the forward and backward
loss, then adds a consistency loss between the forward and
backward loss and finally warps the monitor to the base image
to obtain the final data loss. Optical flow has historically
underperformed on seismic data, due to both smoothness



PREPRINT, OCTOBER 2019 3

and illumination constraints. However, UnFlow replaces the
commonly used illumination loss by a ternary census loss
[22] with the ε-modification by [23]. While this bears possible
promise for seismic data, UnFlow implements 2D losses as
opposed to a 3D implementation that we focus on.

3) Cycle-consistent Generative Adversarial Networks:
Cycle-GANs are a unsupervised implementation of Generative
Adversarial Networks that are known for domain adaptation
[24]. These implement two GAN networks that perform a
forward and backward operation that implements a cycle-
consistent loss in addition to the GAN loss. The warping
problem can be reformulated as a domain adaptation prob-
lem. This implements two Generator networks F and G and
the according discriminators DX and DY . These perform
a mapping G : X → Y and F : Y → X , trained via
the GAN discrimination. The cycle-consistency implements
x → G(x) → F (G(x)) ≈ x with the backwards cycle-
consistency being y → F (y)→ G(F (y)) ≈ y.

Cycle-GANs such as pix2pix [25] separate image data into a
content vector and a texture vector, which could bear promise
in the seismic domain, adapting a wavelet vector and an
interval vector [26]. However, the confounding of imaging
effects, changing underlying geology, changing acquisition,
etc makes the separation non-unique. Moreover, extracting
the time shift information and conditioning in the GAN is
a very complex problem. The Recycle-GAN [27] addresses
temporal continuity in videos, this is however hard to transfer
to seismic data, considering the low number of time-steps in a
4D seismic survey as opposed to videos. Furthermore, the lack
of interpretability of GANs at the point of writing, prohibits
GANs from replacing many physics-based approaches, like the
extraction of time-shifts.

III. METHOD

The Voxelmorph [4] implements a U-net [28] architecture
to obtain a dense warp velocity field and subsequently warps
the monitor cube to match the base cube. This minimizes
assumptions that have to be satisfied for applying optical flow-
based methods. Additionally, the Voxelmorph architecture was
specifically developed on medical data. Medical data often
has few samples, like seismic data, as opposed to popular
video datasets, which FlowNet and derivative architectures are
geared towards application of popular video datasets. A U-
net architecture is particularly suited for segmentation tasks
and transformations with smaller than usual amounts of data,
considering it was introduced on a small biomedical dataset.
The short-cut concatenation between the input and output
layers stabilizes training and avoids the vanishing gradient
problem. It is particularly suited to stable training in this
image matching architecture. In Figure 2 the U-Net is the
left-most stack of layers, aranged in an hourglass architecture
with shortcuts. These feed into a variational layer N (µ, σ),
the variational layer is sampled with the reparametrization
trick, due to the sampler not being differentiable [3]. The
resulting differential flow is integrated using the VecInt layer,
which uses Scaling and Squaring [29]. Subsequently, the
data is passed into a spatial transformation layer. This layer

transforms the monitor cube according to the warp velocity
field obtained from the integrated sampler. The result is used
to calculate the data loss between the warped image and the
base cube.

More formally, we define two 3D images b,m being
the base and monitor seismic respectively. We try to find a
deformation field φ parameterized by the latent variable z such
that φz : R3 → R3. The deformation field itself is defind by
this ordinary differential equation (ODE):

∂φ(t)

∂t
= v(φ(t)), (4)

where t is time, v is the stationary velocity and the following
holds true φ(0) = I . The integration of v over t = [0, 1]
provides φ(1). This integration represents and implements the
one-parameter diffeomorphism in this network architecture.
The variational Voxelmorph formulation assumes an approxi-
mate posterior probability qψ(z|b;m), with ψ representing the
parameterization. This posterior is modeled as a multivariate
normal distribution with the covariance Σz|m,b being diagonal:

qψ(z|b;m) = N (z,µz|m,b,Σz|m,b), (5)

the effects of this assumption are explored in [30].
The approximate posterior probability qψ is used to ob-

tain the variational lower bound of the model evidence
by minimizing the Kullback-Leibler (KL) divergence with
p(z|b;m) being the intractable posterior probability. Follow-
ing the full derivation in [30], considering the sampling of
zk ∼ qψ(z|b,m) for each image pair (b,m), we compute
m ◦ φzk the warped image we obtain the loss:

L(ψ; b,m) = −Eq[log p(b|z;m)]

+ KL[qψ(z|b;m)||pψ(z|b;m)]

+ const

=
1

2σ2K

∑

k

||b−m ◦ φzk ||2

+
1

2
[tr(λDΣz|x;y)− log Σz|x;y)

+ µTz|m,bΛzµz|m,b] + const,

(6)

where Λz is a precision matrix, enforcing smoothness by
the relationship Σ−1z = Λz = λL, λ controlling the scale
of the velocity field. L = D − A is the Laplacian of a
neighbourhood graph over the voxel grid, where D is the
graph degree matrix, and A defining the voxel neighbourhood.
K signifies the number of samples. We can sample µz|m,b
and Σz|m,b as variational layers in a neural network . Given
the diagonal constraint on Σ, we define the variational layer
as the according standard deviation σ of the corresponding
dimension. Therefore we sample X ∼ N (µ, σ2) using the
reparameterization trick first implemented in variational auto-
encoders [31]

Defining the architecture and losses as presented in [30],
ensures several benefits. The registration of two images is
domain-agnostic, which enables us to apply the medical algo-
rithm to seismic data. The warp field is diffeomorphic, which
ensures physically viable, topology-preserving warp velocity
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Fig. 2. 2D representation of Modified 3D Voxelmorph architecture to obtain full scale warp velocity field. The Encoder side of the U-Net architecture consists
of four consecutive Convolutional (orange) and Pooling (red) layers, followed by a convolutional Bottleneck layer. The decoder of the U-Net architecture
consists offour Upsampling (blue) and Convolutional layers are connected to the respective same size layers in the Encoder. The output is passed to two
convolutional layers that are sampled by the reparametrization trick, to provide the static velocity field. The field is integrated via scaling and squaring and
passed to the Spatial Transformer layer (green), which transforms the monitor to optimally match the base image, which is enforced by minimizing the mean
squared error (MSE) of the images.

fields. Diffeomorphisms have recently gained great attention
in the medical field, particularly with large deformation dif-
feomorphic metric mapping (LDDMM) [32], which is compu-
tationally expensive and has therefore not found great use in
the wider field of geophysics, due to larger amounts of data.
Moreover, this method implements a variational formulation
based on the covariance of the flow field. 3D warping with
uncertainty measure has not been used in seismic data before.

The network is implemented using Tensorflow [33] and
Keras [34]. Our implementation is based on the original code
in the Voxelmorph package [35].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

The experimental setup for this paper is based on a variation
of the modified Voxelmorph [4] formulation. We extended the
network to accept patches of data, because our seismic cubes
are generally larger than the medical brain scans and therefore
exceed the memory limits of our GPUs. Moreover, Voxel-
morph in its original formulation provides sub-sampled flow
fields, this is due to computational constraints. We decided to
modify the network to provide full-scale flow fields, despite
the computational cost. This enables direct interpretation of the
warp field, which is common in 4D seismic analysis. However,
we do provide an analysis in Section IV-B3 of the sub-sampled
flow-field interpolated to full scale, in the way it would be
passed to the Spatial Transformer layer.

The network definition for the subsampled flow field differs
from the definition in Figure 2 that the last upsampling and
convolution layer in the Unet, including the skip connection,
right before the variational layers (µ, σ) is omitted. That

Fig. 3. Training Losses over time with the KL-divergence at the sampling
layer, the data loss calculated by MSE, and the combined total loss.

leaves the flow field at a subsampled map by a factor of
two. Computationally, this lowers the cost on the Integration
operation before resampling for the Spatial Transformer.

The data situation for this experiment is special in the sense
that the method is self-supervised. We therefore do not provide
a validation dataset during training. The data are 6 surveys
from the North Sea. Mail field from years 1088, 2005 A,
2005 B, and 2012. Further we compare to an adjecent field
1903 and 2005. While we would be content with the method
working on the field data (years 1988 and 2005 Survey A)
by itself, we do validate the results on separate data from
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the same field which was acquired with different acquisition
parameters and at different times (years 2005 Survey B and
2012). Moreover, we test the data on seismic data from an
adjacent field that was acquired independently (years 1993
and 2005). All data is presented with a relative coordinate
system due to confidentiality, where 0 s on the y-axis does not
represent the actual onset of the recording. The field geology
and therefore seismic responses are very different. Due to lack
of availability we do not test the trained network on land data
or data from different parts of the world. Considering, that the
training set is one 4D seismic monitor-base pair, a more robust
network would emerge from training on a variety of different
cubes.

Figure 3 shows the training losses. Within a few epochs
the network converges strongly, however within 10 epochs the
KL divergence increases slightly over the training. The data
loss, optimizing the warping result decreases over the training
period. Private correspondence with the authors of Voxelmorph
[35] suggests that a slight increase of the KL divergence is
acceptable as long as the total loss decreases.

B. Results and Discussion

The network presented generates warp fields in three dimen-
sions as well as uncertainty measures. We present results for
three cases in Figure 4, 7, and 9 with the corresponding warp
fieds and uncertainties in Figure 5, 8, and 10. In Figure 4
we show the results on the data, which the unsupervised
method was trained on. Obtaining a warp field on the data
itself is a good result, however, we additionally explore the
generalizability of the method. Considering the network is
trained to find an optimum warp field for the data it was
originally trained on, we go on to test the network on data
from the same field, that was recorded with significantly
different acquisition parameters in Figure 7. These results
test the networks generalizability on co-located data, therefore
not expecting vastly differing seismic responses from the
subsurface itself. The are imaging differences and differences
in equipment in addition to the 4D difference however. In
Figure 9 we use the network on unseen data from a different
field. The geometry of the field, as well as the acquisition
parameters are different, making generalization a challenge.

In Figure 4 we collect six 2D panels from the 3D warping
operation. In Figure 4(a) and Figure 4(b) we show the unal-
tered base and monitor respectively. The difference between
the unaltered cubes is shown in Figure 4(e). In Figure 4(c)
we show the warped result by applying the z-warp field in
Figure 4(d), as well as the warp fields in (x,y) direction fully
displayed in Figure 5 including their respective uncertainties.
The difference of the warped result in Figure 4(f) is calculated
from the matched monitor in Figure 4(c) and the base in
Figure 4(a).

It is apparent that the matched monitor significantly reduced
noise by mis-aligned reflections. In Table I we present the
numeric results. These were computed on the 3D cube for
an accurate representation. We present the root mean square
(RMS) and mean absolute error (MAE) and the according
difference between Monitor and Matched Difference results.

Run Monitor Matched Ratio Monitor Matched Ratio
RMS RMS % MAE MAE %

Train 0.1047 0.0525 50.1 0.0744 0.0348 46.7
Test A 0.0381 0.0237 62.2 0.0291 0.0172 59.1
Test B 0.0583 0.0361 62.0 0.0451 0.0254 56.4

TABLE I
QUANTITATIVE EVALUATION OF RESULTS. RMS AND MAE CALCULATED

AGAINST RESPECTIVE BASE DATA. TRAINING RECALL, TEST A - SAME
FIELD, DIFFERENT ACQUISITION, TEST B - DIFFERENT FIELD, DIFFERENT

ACQUISITION

We present RMS and MAE to make the values comparable
in magnitude as opposed the mean squared error (MSE).
We present both values, because the RMS value is more
sensitive to large values, while MAE scales the error linearly
therefore not masking low amplitude mis-alignments. Both
measurements show a reduction on the train data to 50% or
below. The test on both the validation data on the same field
and the test data on another field show a similar reduction,
while the absolute error differs in a stable manner.

In Figure 5 we present the three dimensional warp field to
accompany the results in Figure 4. Figure 5(a), 5(b), and 5(c)
show the warp field in x, y, and z-direction. The z-direction
is generally referred to as time shifts in 4D seismic. Fig-
ure 5(d), 5(e), and 5(f) contain the corresponding uncertainties
in x, y, and z-direction obtained from the network.

1) Recall to Training Data: In Figure 4 we evaluate the
results of the self-supervised method on the training data itself.
The main focus is on the main reflector in the center of the
panels. The difference in Figure 4(e) shows that the packet of
reflectors marked reservoir in the monitor is out of alignment,
causing a large difference, which is corrected for in Figure 4(f).
The topmost section in the panel of Figure 4(c) shows the
alignment of a faulted segment, marked fault in the monitor,
to an unfaulted segment in the base. The fault appearing is
most likely due to vastly improved acquisition technology for
the monitor.

The warp fields in Figure 5 are an integral part in QC-ing
the validity of the results. Physically, we expect the strongest
changes in the z-direction in Figure 5(c). The changes in
Figure 5(a) and Figure 5(b) show mostly sub-sampling mag-
nitude shifts, except for the x-direction shifts around the fault
in the top-most panel present in the monitor in Figure 4(b).
Figure 5(a) and Figure 5(b) show strong shifts at 0.4s on the
left of the panel which corresponds to the strong amplitude
changes in the base and monitor. On the one side these corre-
spond to the strongest difference section, additionally these are
geological hinges, which are under large geomechanical strain.
However, these are very close to the sides of the warp, which
may cause artifacts. Figure 5(d), Figure 5(e), and Figure 5(f)
show the uncertainty of the network. These uncertainties are
across the bank within the 10% range of the sampling rate
(∆t = 4 ms, ∆x, y = 25 m). The certainty within the bulk
package in the center of the panels is the lowest in x-, y-, and
z-direction. While being relatively lover in the problematic
regions discussed before.

The warp field in Figure 5(d) contains some reflector shaped
warp vectors around 0.4 s, which is due to the wavelet mis-
match of the 1988 base to the 2005 monitor. The diffeomorphic
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(a) Base Seismic (b) Monitor Seismic (c) Matched Monitor

(d) z-Direction Shifts (e) Difference Monitor-Base (f) Difference Matched-Base

Fig. 4. Warp results and change in difference on training recall of 1988 to 2005a data. Axes are relative to comply with confidentiality.
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(a) x-direction Shifts (b) y-direction Shifts (c) z-direction Shifts

(d) x-direction Uncertainty (e) y-direction Uncertainty (f) z-direction Uncertainty

Fig. 5. Warp fields (top) with uncertainties (bottom) that accompanies training recall in Figure 4
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nature of the network aligns the reflectors in the image, which
causes some reflector artifacts in the z-direction maps.

2) Generalization of the Network: While the performance
of the method on a data set by itself is good, obtaining a
trained model that can be applied on other similar data sets
is essential even for self-supervised methods. We test the
network on two test sets, Test A is conducted on the same
geology with unseen data from a different acquisition, while
Test B is on a different field and a different acquisition. The
network was trained on a single acquisition relation (2005a -
1988). In Figure 7 we present the crossline data from the same
field the network was trained on. The data sets was however
acquired at a different calendar times (2005b - 2012), with
different acquisition parameters. It follows that although the
geology and therefore the reflection geometry is similar, the
wavelet and hence the seismic response are vastly different.
This becomes apparent when comparing the base Figure 7a to
Figure 4(b), which were acquired in the same year.

Test A evaluates the network performance on unseen data
in the same field (Train: 1988-2005a, Test A: 2005b - 2012).
The quantitative results in Table I for Test A generally show
lower absolute errors compared to the training results in
Section IV-B1. The reduction of the overall amplitudes in the
difference maps is reduce by 40%. The unaligned monitor
difference in Figure 7(e) shows a strong coherent difference
around below the main packet of reflectors around 0.3 s to
0.4 s. This would suggest a velocity draw-down in this packet.
While the top half of the unaligned difference contains some
misalignment, we would expect the warp field to display a
shift around 0.35 s, which can be observed in Figure 7(d).
The aligned difference in Figure 7(f) contains less coherent
differences. The difference does still show some overall noise
in the maps. This could be improved upon by a more diverse
training set. The higher resolution data from 2005 and 2012
possibly has an influence on the result too. Regardless, we can
see some persisting amplitude difference around 0.4 s which
appears to be signal as opposed to some misalignment noise
above. The warp fields in Figure 8 show relatively smooth
warp fields in x- and y-direction. The warp field in Figure 8(f)
shows overall good coherence, including the change around
0.4 s we would expect. The uncertainty values are in sub-
sampling range, with the strongest certainty within the strong
reflector packet at 0.35 s.

Test B evaluates the network performance on a different
field at different times. The test shows a very similar reduction
of overall errors in Table I. The RMS is reduced by 38% and
the MAE is reduced more slightly more in comparison to Test
A. In Figure 9 we present the seismic panels to accompany
Test B. The data in Figure 9(a) and Figure 9(b) is well resolved
and shows good coherence. However, the unaligned difference
in Figure 9(e) shows very strong variations in the difference
maps. Figure 9(f) reduces these errors significantly, bringing
out coherent differences in the main reflector at 0.27 s. We
can see strong chaotic differences in Figure 9(e), due to
the faulted nature of the geology. The network aligns these
faulted blocks relatively well, however, some artifacts persist.
This is consistent with the warp fields in Figure 10. The x-
and y-direction in Figure 10(d) and Figure 10(e) respectively

(a) Full-Scale Matched Difference (b) Upsampled Matched Difference

(c) Full-Scale Warp Field (d) Upsampled Warp Field

Fig. 6. Comparison of matched differences (top) and z-direction warp
field (bottom) of full-scale neural architecture (left) and subsampled neural
architecture (right).

show overall smooth changes, around faults, these changes
are stronger. The z-direction changes are consistent with the
Training validation and Test A, where the changes are overall
stronger. This is also consistent with our geological intuition.

3) Subsampled Flow: The original Voxelmorph implemen-
tation uses a subsampled warp field. This has two benefits,
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namely a smoother warp velocity field and reduced com-
putational cost. The aforementioned results were obtained
using a full-scale network. In Figure 6 we present the full
scale and upsampled results on the training set. The matched
difference in Figure 6b contains more overall noise compared
to Figure 6a. This is congruent with the warp fields in the
figure. The upsampled z-direction warp field in Figure 6d
seems to have some aliasing on the diagonal reflector around
0.4 s. This explains some of the artifacts in the difference in
Figure 6b. The overall warp velocity in Figure 6d is smoother
compared to the full-scale field. However, the general structure
of coherent negative and positive areas matches in both warp
fields, while the details differ. The main persistent difference
of the reflector packet at 0.4 s seems similar, nevertheless, the
differences further up slope to the right are smoother in the
full scale network result and have stronger residual amplitudes
in the upsampled network.

V. CONCLUSION

We introduce a deep learning based self-supervised 4D
seismic warping method. Currently, time shifts are most com-
monly estimated in 1D due to computational constraints. We
explore 3D time-shift estimation as a viable alternative, which
decouples imaging and acquisition effects, geomechanical
movement and changes in physical properties like velocity and
porosity from confounding into a single dimension. Existing
3D methods are computationally expensive, where this learnt
model can generalize to unseen data without re-training,
with calculation times within minutes on consumer hardware.
Moreover, this method supplies invertible, reproducible, dense
3D alignment while providing warp fields with uncertainty
measures, while leveraging recent advancements in neural
networks and deep learning.

We evaluate our network on the training data and two
different independent test sets. We do not expect the aligned
difference to be exactly zero, due to actual physical changes in
the imaged subsurface. Although the network is unsupervised,
a transfer to unseen data is desirable and despite some increase
in the overall error possible. The warping on the training data
is very good and the warp fields are coherent and reflect the
physical reality one would expect. The transfer too unseen
data works well, although the misalignment error increases.
The decrease in both RMS and MAE is consistent across test
sets.

Furthermore, we implement a variational scheme which
provides uncertainty measures for the time shifts. On the data
presented, we obtain subsample scale uncertainties across all
directions. The main assumption of the network is a diffeo-
morphic deformation, which is topology preserving. We show
that the network handles faults well in both training recall
and test data, that in theory could violate the diffeomorphic
assumption.

We go on to compare a full-scale network to an upsampled
network. The full-scale network yields better results and is
preferable on seismic data in comparison to the upsampled
network presented in the original medical Voxelmorph.

We do expect the network to improve upon training on
a more diverse variety of data sets and seismic responses.

While the initial training is time-consuming (25 h on a Nvidia
Titan X with Pascal chipset), inference is near instantaneous.
Moreover, transfer of the trained network to a new data
set is possible without training, while accepting some error.
Alternatively fine-tuning to new data is possible within few
epochs (<1 h).
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(a) Base Seismic (b) Monitor Seismic (c) Matched Monitor

(d) z-Direction Shifts (e) Difference Monitor-Base (f) Difference Matched-Base

Fig. 7. Matched difference and warp field for generalization of network to same field with different data (2005b and 2012).
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(a) x-direction Shifts (b) y-direction Shifts (c) z-direction Shifts

(d) x-direction Uncertainty (e) y-direction Uncertainty (f) z-direction Uncertainty

Fig. 8. Warp fields (top) with uncertainties (bottom) that accompanies same field generalization in Figure 7
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(a) Base Seismic (b) Monitor Seismic (c) Matched Monitor

(d) z-Direction Shifts (e) Difference Monitor-Base (f) Difference Matched-Base

Fig. 9. Matched difference and warp field for generalization of network to a different field (1993 and 2005).



PREPRINT, OCTOBER 2019 13

(a) x-direction Shifts (b) y-direction Shifts (c) z-direction Shifts

(d) x-direction Uncertainty (e) y-direction Uncertainty (f) z-direction Uncertainty

Fig. 10. Warp fields (top) with uncertainties (bottom) that accompanies generalization to different field in Figure 9
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M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[34] F. Chollet et al., “Keras,” https://keras.io, 2015.
[35] A. V. Dalca, G. Balakrishnan, B. Fischl, P. Golland, J. Guttag, J. E.

Iglesias, M. Rakic, M. R. Sabuncu, E. Yu, A. Zhao et al., “Voxelmorph,”
voxelmorph.mit.edu, 2018.
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