
Ph.D. Thesis
Doctor of Philosophy

Machine Learning in Geoscience
Applications of Deep Neural Networks in
4D Seismic Data Analysis

Jesper Sören Dramsch

Kongens Lyngby 2021



DTU Physics
Department of Physics
Technical University of Denmark

Fysikvej
Building 311
2800 Kgs. Lyngby, Lyngby
info@fysik.dtu.dk
Tel.: +45 4525 3344
https://www.fysik.dtu.dk



Abstract

Machine Learning provides a tool for the modelling and analysis of geoscientific data. I
have placed recent developments in deep learning into the greater context of machine
learning by reviewing the approaches and challenges of the use of machine learning in
geoscience. The thesis consists of six peer-reviewed publications and one submitted jour-
nal paper. Furthermore, five peer-reviewed publications are placed in the appendix.
The aim of this thesis is to apply recent developments in computer vision systems, neural
networks, and machine learning to geoscientific data, particularly 4D seismic analysis.
Neural networks are a type of machine learning that has made significant contributions
to modern artificial intelligence and automation. The applicability of neural networks
for their capability of being a universal function approximator was recognized within
geophysics from an early stage. Following the recent interest in deep learning, neural
networks have experienced a renaissance in geoscience applications, particularly in au-
tomatic seismic interpretation, inversion processes and sequence modelling.
This is followed by an exploration of unsupervised machine learning to segment chalk
sediments in back-scatter scanning electron microscopy data. The next chapter shows
that using neural networks pre-trained on natural images can reduce the data neces-
sary for transfer learning to geoscience problems. This is followed by a chapter show-
ing that complex-valued convolutions can stabilize training and data compression on
non-stationary physical data. Subsequently, pressure-saturation data is extracted from
4D seismic amplitude difference maps using a novel deep dense sample-based encoder-
decoder network. The network contains a low-assumption physical basis (Amplitude
Versus Offset) as explicit features and learns the residual for the regression of the ”inver-
sion” data. This work shows that transfer from simulation data to field data is possible.
Finally, an unsupervised method is devised to extract 3D time-shifts from two 4D seis-
mic cubes. The network extracts these 3D time-shifts including uncertainty measures.
Commonly, time-shifts are extracted in 1D, due to processing speed, computational cost
and poor performance of 3D methods. Within the training loop, the stationary veloc-
ity field is numerically integrated to obtain 3D time shifts that are constrained by the
topology in a geologically consistent manner. The unsupervised implementation of the
network structure ensures that biases from other time-shift extraction methods are not
implicitly included in the network. This application utilizes unsupervised learning by
devising a way of behaviour for the network to follow instead of supplying ground truth
labels. Moreover, this results in a way to increase trust in the system, by limiting the
extraction process to the deep learning system and performing well-defined operations
within the network to automate the unsupervised training.



ii Dansk Resumé

Dansk Resumé
Maskinlæring (’machine learning’) er et redskab til modellering og analyse af geoviden-
skabelige data Jeg har sat den seneste udvikling inden for dyb læring (’deep learning’)
ind i en større sammenhæng indenfor maskinlæring ved at gennemlæse de tilgange og
udfordringer som maskinlæring har inden for geovidenskab. Afhandlingen består af
seks peer-reviewed udgivelser og en indsendt journalartikel. Yderligere er der fem peer-
reviewed udgivelser i appendix.

Formålet med denne afhandling er, at anvende den seneste udvikling inden for syste-
mer for computer vision, neurale netværk og maskinlæring for geovidenskabelige data,
især 4D seismisk analyse. Neurale netværk er en type maskinlæring, der har bidraget
betydeligt til moderne kunstig intelligens og automatisering. Det blev på et tidligt tid-
spunkt anerkendt inden for geofysik, at neurale netværk var anvendelige. Brugen af
neurale netværk for deres evne til at være universelle funktions-approksimatorer blev
tidligt anderkendt inden for geofysik. Grundet den nylige interesse for dyb læring, har
neurale netværk oplevet en renæssance inden for geovidenskabelige anvendelser, særligt
automatisk seismisk fortolkning, inverterings processor og sekvensmodellering.

Dette efterfølges af en udforskning af uovervåget læring til segmentring af kalksedi-
menter i tilbagesprednings-elektronmikroskopi ”back-scatter scanning electron microscopy”
data. Det næste kapitel viser, at brugen af neurale netværk prætrænede på billeder, kan
reducere den nødvendige mængde data, der er nødvendige for at overføre læring til
geovidenskabelige problemer. Kapitlet derefter viser, at foldninger med komplekse tal
kan stabilisere træningen og datakompressionen af ikke-stationære fysiske data. Derpå
beregnes tryk og mætningsdata med brug af 4D seismiske data ved hjælp af et nyt dybt
tæt prøvebaseret indkoder-dekoder netværk. Netværket indeholder et fysisk grundlag,
for selv at lære resten af inversionsprocessen. Arbejdet viser overførsel fra simulerede til
rigtige data er muligt.

Endelig blev der udviklet en uovervåget ’unsupervised’ metode, til at udregne 3D-
tidsforskydninger fra to 4D seismiske kuber. Netværket beregner disse 3D tidsskift
inklusiv usikkerhedsmålinger på dem. På grund af de beregningsmæssige omkostninger
og dårlig kvalitet, bliver disse normalt kun beregnet i 1D. Inden for træningsløkken
integreres det stationære hastighedsfelt numerisk for at få 3D tidsskift, som er begrænset
af topologien på en geologisk konsistent måde. Den uovervågende implementation af
netværksstrukturen sikrer at bias fra andre tidsforskydnings ekstraktionsmetoder ikke
implicit indgår i netværket. Den uovervågende metode lærer netværket at følge en
bestemt opførsel uden brug af sande ”ground truth” eksempler. Yderligere, styrker
dette tilliden til systemet, da ekstrationsmetoden begrænses til det dybe læringssystem
og veldefinerede oprationer inden for dette som automatiserer den uovervågede træning.



Preface

This dissertation is presented by

Jesper Sören Dramsch

to the

Department of Physics

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Ph.D.)

at the

Technical University of Denmark

Kongens Lyngby, October 31st, 2020



iv Preface

Ph.D. Thesis
University: Technical University of Denmark (DTU)
Department: Department of Physics / Centre for Oil and Gas – DTU
Author: Jesper Sören Dramsch
Title: Machine Learning in Geoscience

Applications of Deep Neural Networks in4D Seismic Data Analysis
Principal Advisor: Mikael Lüthje
Co-Advisor: Anders Nymark Christensen (DTU Compute)
External Advisor: Colin MacBeth (Heriot-Watt University, UK)
Submitted: 2019-11-14
Revised Submission: 2020-10-31



Acknowledgements
This thesis would not exist, without the support of my peers.

My sincere gratitude to my supervisor Mikael Lüthje for his continuous support,
supervision and guidance through the perilous cliffs of pursuing a Ph.D. in a new and
ever-evolving academic center. The open discussions and trust in my ability allowed me
to thrive during this period. My appreciation extends to Colin MacBeth, who in the
position as my external co-supervisor welcomed me to Edinburgh and provided further
guidance and insight into the practical workings of 4D seismics. I am deeply indebted to
my internal co-supervisor Anders Nymark Christensen, who provided valuable insight
into the statistical working of machine learning and kept my weights and biases in check.
Thank you for inspiring me to achieve more than I ever thought possible.

To the friends we had and made along the way! Kirstie Wright and Anna Clark
you kept me sane from day to day and made Scotland feel home. Thank you. Robert
Leckenby, Tim Albrecht, Bettina Schmidt, Matthias Schneider, Manuela Köllner, Clara
Dabrock, Brian Burnham and Florian Smit, you were always there and I appreciate you
for it. Marie-Daphne Mangriotis thank you for welcoming me to ETLP and the great
conversations. Furthermore, I would like to thank Antony Hallam and Gustavo Corte
for great discussion and peership.

My thanks go out to the Software Underground community, for keeping the spirit of
sharing and collaboration. Especially, Matt Hall for the leadership and trust. To Lukas
Mosser, for always encouraging and inspiring me to strive for more.

I would like to thank my colleagues at the DHRTC, particularly Tala Maria Aabø
for being a fantastic co-conspirator in the early days and Florian Smit for welcoming me
into this new environment. Furthermore, I’d like to thank Frédéric Amour, Charlotte
Lind Laurentzius, Anne Lysgaard and Helle Baumann for being a pleasure to work with.

I want to thank part of the Open Source community and in particular the scientific
Python community, without these tools this thesis would be much less substantial.



Difficulties strengthen the mind,
as labor does the body.

SENECA THE YOUNGER



Disclaimer

This thesis reprints several published scientific articles and converts them to the format
of this thesis. It was attempted to reprint these in their original type-setting, but deemed
unacceptable by the evaluation of the examining committee.

The copyright of these articles belongs to their respective owners and are reprinted
under the Fair Use policy in fulfillment of this academic thesis. The publications are
outlined as clearly as possible within the means of this thesis.

No copyright infringement intended.



viii



Publication List
Book Chapters
Dramsch, J. S. (Sept. 2020a). “70 years of machine learning in geoscience in re-

view”. In: Advances in Geophysics. Ed. by B. Moseley and L. Krischer. Published,
Peer-Reviewed, Section 2.2. Academic Press. Chap. 4. isbn: 9780128216699.

Journal Articles
Dramsch, J. S., A. N. Christensen, C. MacBeth, and M. Lüthje (2019b). “Deep Unsu-

pervised 4D Seismic 3D Time-Shift Estimation with Convolutional Neural Networks”.
In: IEEE Transactions in Geoscience and Remote Sensing. In Review, Chapter 7.

Dramsch, J. S., M. Lüthje, and A. N. Christensen (2019h). “Complex-valued neural
networks for machine learning on non-stationary physical data”. In: Computers &
Geoscience. Accepted, Chapter 5.

Peer-Reviewed Conference Proceedings
Dramsch, J. S. and M. Lüthje (2018d). “Deep-learning seismic facies on state-of-the-art

CNN architectures”. In: SEG Technical Program Expanded Abstracts 2018. Published,
Chapter 4. Society of Exploration Geophysicists, pp. 2036–2040. doi: 10 . 1190 /
segam2018-2996783.1. url: https://doi.org/10.1190/segam2018-2996783.1.

Peer-Reviewed Workshop Proceedings
Dramsch, J. S., G. Corte, H. Amini, M. Lüthje, and C. MacBeth (2019d). “Deep

Learning Application for 4D Pressure Saturation Inversion Compared to Bayesian
Inversion on North Sea Data”. In: Second EAGE Workshop Practical Reservoir Mon-
itoring 2019. Published, Chapter 6. EAGE. doi: 10.3997/2214-4609.201900028.

https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.3997/2214-4609.201900028


x Publication List

Dramsch, J. S., G. Corte, H. Amini, C. MacBeth, and M. Lüthje (2019g). “Includ-
ing Physics in Deep Learning – An Example from 4D Seismic Pressure Saturation
Inversion”. In: 81st EAGE Conference and Exhibition 2019 Workshop Programme.
Published, Chapter 6. EAGE. doi: 10.3997/2214-4609.201901967. url: https:
//doi.org/10.3997/2214-4609.201901967.

Dramsch, J. S., F. Amour, and M. Lüthje (2018a). “Gaussian Mixture Models For Ro-
bust Unsupervised Scanning-Electron Microscopy Image Segmentation Of North Sea
Chalk”. In: First EAGE/PESGB Workshop Machine Learning. Published, Chapter 3.
EAGE. doi: 10.3997/2214-4609.201803014. url: https://doi.org/10.3997/
2214-4609.201803014.

https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201803014
https://doi.org/10.3997/2214-4609.201803014
https://doi.org/10.3997/2214-4609.201803014


Publications Not Included
Journal Articles
Aabø, T. M., J. S. Dramsch, C. L. Würtzen, S. Seyum, F. Amour, M. Welch, and M.

Lüthje (2020). “An integrated workflow for fracture characterization in chalk reser-
voirs, applied to the Kraka Field”. In: Marine and Petroleum Geology 112. Published,
Appendix B. issn: 0264-8172. doi: https://doi.org/10.1016/j.marpetgeo.
2019.104065. url: http://www.sciencedirect.com/science/article/pii/
S026481721930501X.

Côrte, G., J. S. Dramsch, H. Amini, and C. MacBeth (2020). “Deep neural network
application for 4D seismic inversion to changes in pressure and saturation: Optimizing
the use of synthetic training datasets”. In: Geophysical Prospecting 68.7. Published,
Appendix B.2, pp. 2164–2185.

Peer-Reviewed Conference Proceedings
Mosser, L., W. Kimman, J. S. Dramsch, S. Purves, A. De la Fuente Briceño, and

G. Ganssle (June 2018a). “Rapid seismic domain transfer: Seismic velocity inversion
and modeling using deep generative neural networks”. In: 80th EAGE Conference
and Exhibition 2018. Published, Appendix C. EAGE. doi: 10.3997/2214- 4609.
201800734. url: https://doi.org/10.3997/2214-4609.201800734.

Aabø, T. M., J. S. Dramsch, M. Welch, and M. Lüthje (June 2017a). “Correlation
of Fractures From Core, Borehole Images and Seismic Data in a Chalk Reservoir in
the Danish North Sea”. In: 79th EAGE Conference and Exhibition 2017. Published,
Appendix C.2. EAGE. doi: 10.3997/2214-4609.201701283. url: https://doi.
org/10.3997/2214-4609.201701283.

Peer-Reviewed Workshop Proceedings
Dramsch, J. S. and M. Lüthje (2018e). “Information Theory Considerations In Patch-

Based Training Of Deep Neural Networks On Seismic Time-Series”. In: First EAGE/PESGB
Workshop Machine Learning. Published, Appendix D. EAGE. doi: 10.3997/2214-
4609.201803020. url: https://doi.org/10.3997/2214-4609.201803020.

https://doi.org/https://doi.org/10.1016/j.marpetgeo.2019.104065
https://doi.org/https://doi.org/10.1016/j.marpetgeo.2019.104065
http://www.sciencedirect.com/science/article/pii/S026481721930501X
http://www.sciencedirect.com/science/article/pii/S026481721930501X
https://doi.org/10.3997/2214-4609.201800734
https://doi.org/10.3997/2214-4609.201800734
https://doi.org/10.3997/2214-4609.201800734
https://doi.org/10.3997/2214-4609.201701283
https://doi.org/10.3997/2214-4609.201701283
https://doi.org/10.3997/2214-4609.201701283
https://doi.org/10.3997/2214-4609.201803020
https://doi.org/10.3997/2214-4609.201803020
https://doi.org/10.3997/2214-4609.201803020


xii Open Source Software List

Open Source Software List
Open Source Packages
Dramsch, J. S. and Contributors (2019c). Complex-Valued Neural Networks in Keras

with Tensorflow. Open-Source Software. doi: 10.6084/m9.figshare.9783773. url:
https://github.com/JesperDramsch/keras-complex.

Reproducible Code
Dramsch, J. S. (2019c). Reproducible Code: Complex-valued neural networks for ma-

chine learning on non-stationary physical data. url: https://github.com/JesperDramsch/
Complex-CNN-Seismic.

Dramsch, J. S. (2019d). Reproducible Code: Deep Learning Application for 4D Pres-
sure Saturation Inversion Compared to Bayesian Inversion on North Sea Data. url:
https://github.com/JesperDramsch/4D-seismic-neural-inversion.

Dramsch, J. S. (2019e). Reproducible Code: Deep Unsupervised 4D Seismic 3D Time-
Shift Estimation with Convolutional Neural Networks. url: https://github.com/
JesperDramsch/voxelmorph-seismic.

Dramsch, J. S. (Dec. 15, 2018e). Reproducible Code: Deep-learning seismic facies on
state-of-the-art CNN architectures. doi: 10 . 6084 / m9 . figshare . 7227545. url:
https://github.com/JesperDramsch/seismic-transfer-learning.

Dramsch, J. S. (2018f). Reproducible Code: Gaussian Mixture Models For Robust Un-
supervised Scanning-Electron Microscopy Image Segmentation Of North Sea Chalk.
url: https://github.com/JesperDramsch/backscatter-sem-segmentation.

Dramsch, J. S. (2018g). Reproducible Code: Information Theory Considerations in
Patch-based Training of Deep Neural Networks on Seismic Time-Series. url: https:
//github.com/JesperDramsch/windowing-seismic-for-deep-learning.

https://doi.org/10.6084/m9.figshare.9783773
https://github.com/JesperDramsch/keras-complex
https://github.com/JesperDramsch/Complex-CNN-Seismic
https://github.com/JesperDramsch/Complex-CNN-Seismic
https://github.com/JesperDramsch/4D-seismic-neural-inversion
https://github.com/JesperDramsch/voxelmorph-seismic
https://github.com/JesperDramsch/voxelmorph-seismic
https://doi.org/10.6084/m9.figshare.7227545
https://github.com/JesperDramsch/seismic-transfer-learning
https://github.com/JesperDramsch/backscatter-sem-segmentation
https://github.com/JesperDramsch/windowing-seismic-for-deep-learning
https://github.com/JesperDramsch/windowing-seismic-for-deep-learning


Reproducible Code xiii

Commit Contributions to Free Open Source
Software

Open Geoscience Awesome List
Contribution: Creator and Maintainer of List. Implemented guidelines and auto-
mated testing. [Link]

Full Citation: J. S. Dramsch and Contributors (2018b). Awesome Open Geoscience.
Maintainer. url: https : / / github . com / softwareunderground / awesome - open -
geoscience

Bruges
Contribution: Created documentation, fixed docstrings and exposed functional API.
[Link]

Full Citation: Bruges: Bag of really useful geophysical equations and stuff (2016).
url: https://github.com/agile-geoscience/bruges

Welly
Contribution: Created documentation, exposed functional API. [Link]

Full Citation: Welly: Manage subsurface well data (2015). url: https://github.
com/agile-geoscience/welly

Tensorflow
Contribution: Contribution to documentation of tf.keras.Conv1D and tf.keras.Lambda
[Link].

Full Citation: Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng (2015). TensorFlow: Large-Scale Machine

https://github.com/softwareunderground/awesome-open-geoscience/commits/master?after=fac0a591764c35f0a6d856965e1ced24ec5ca1f0+244
https://github.com/softwareunderground/awesome-open-geoscience
https://github.com/softwareunderground/awesome-open-geoscience
https://github.com/agile-geoscience/bruges/pulls?q=is%3Apr+is%3Aclosed+author%3AJesperDramsch
https://github.com/agile-geoscience/bruges
https://github.com/agile-geoscience/welly/pulls?q=is%3Apr+is%3Aclosed+author%3AJesperDramsch
https://github.com/agile-geoscience/welly
https://github.com/agile-geoscience/welly
https://github.com/tensorflow/tensorflow/pulls?utf8=%E2%9C%93&q=is%3Apr+is%3Aclosed+author%3AJesperDramsch


xiv Open Source Software List

Learning on Heterogeneous Systems. Software available from tensorflow.org. url: http:
//tensorflow.org/

Scikit-Learn
Contribution: Created examples for documentation of
sklearn.model_selection.GroupShuffleSplit, and sklearn.ensemble.BaggingClassifier.
[Link]

Full Citation: F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12, pp. 2825–2830

Pandas
Contribution: Wrote documentation and examples for pd.str.slice, pd.str.pad,
and pd.str.repeat. [Link]

Full Citation: W. McKinney et al. (2010). “Data structures for statistical computing
in python”. In: Proceedings of the 9th Python in Science Conference. Vol. 445. Austin,
TX, pp. 51–56

http://tensorflow.org/
http://tensorflow.org/
https://github.com/scikit-learn/scikit-learn/pulls?utf8=%E2%9C%93&q=is%3Apr+is%3Aclosed+author%3AJesperDramsch
https://github.com/pandas-dev/pandas/pulls?utf8=%E2%9C%93&q=is%3Apr+is%3Aclosed+author%3AJesperDramsch


Presentation List
Conference Presentation
Dramsch, J. S. and M. Lüthje (2018d). “Deep-learning seismic facies on state-of-the-art

CNN architectures”. In: SEG Technical Program Expanded Abstracts 2018. Published,
Chapter 4. Society of Exploration Geophysicists, pp. 2036–2040. doi: 10 . 1190 /
segam2018-2996783.1. url: https://doi.org/10.1190/segam2018-2996783.1.

Mosser, L., W. Kimman, J. S. Dramsch, S. Purves, A. De la Fuente Briceño, and
G. Ganssle (June 2018a). “Rapid seismic domain transfer: Seismic velocity inversion
and modeling using deep generative neural networks”. In: 80th EAGE Conference
and Exhibition 2018. Published, Appendix C. EAGE. doi: 10.3997/2214- 4609.
201800734. url: https://doi.org/10.3997/2214-4609.201800734.

Workshop Presentation
Dramsch, J. S., G. Corte, H. Amini, M. Lüthje, and C. MacBeth (2019d). “Deep

Learning Application for 4D Pressure Saturation Inversion Compared to Bayesian
Inversion on North Sea Data”. In: Second EAGE Workshop Practical Reservoir Mon-
itoring 2019. Published, Chapter 6. EAGE. doi: 10.3997/2214-4609.201900028.

Dramsch, J. S., G. Corte, H. Amini, C. MacBeth, and M. Lüthje (2019g). “Includ-
ing Physics in Deep Learning – An Example from 4D Seismic Pressure Saturation
Inversion”. In: 81st EAGE Conference and Exhibition 2019 Workshop Programme.
Published, Chapter 6. EAGE. doi: 10.3997/2214-4609.201901967. url: https:
//doi.org/10.3997/2214-4609.201901967.

Dramsch, J. S., F. Amour, and M. Lüthje (2018a). “Gaussian Mixture Models For Ro-
bust Unsupervised Scanning-Electron Microscopy Image Segmentation Of North Sea
Chalk”. In: First EAGE/PESGB Workshop Machine Learning. Published, Chapter 3.
EAGE. doi: 10.3997/2214-4609.201803014. url: https://doi.org/10.3997/
2214-4609.201803014.

Workshop Poster
Dramsch, J. S. and M. Lüthje (2018e). “Information Theory Considerations In Patch-

Based Training Of Deep Neural Networks On Seismic Time-Series”. In: First EAGE/PESGB

https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.3997/2214-4609.201800734
https://doi.org/10.3997/2214-4609.201800734
https://doi.org/10.3997/2214-4609.201800734
https://doi.org/10.3997/2214-4609.201900028
https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201803014
https://doi.org/10.3997/2214-4609.201803014
https://doi.org/10.3997/2214-4609.201803014


xvi Presentation List

Workshop Machine Learning. Published, Appendix D. EAGE. doi: 10.3997/2214-
4609.201803020. url: https://doi.org/10.3997/2214-4609.201803020.

Other Presentations
Dramsch, J. S., G. Corte, H. Amini, M. Lüthje, and C. MacBeth (May 2019f). Deep

Learning Application for 4D Pressure Saturation Inversion Compared to Bayesian
Inversion on North Sea Data. ETLP Sponsor Meeting 2019.

Dramsch, J. S. (2018c). KFold in Deep Learning. Lightning Talk – EuroScipy 2018.
doi: 10.6084/m9.figshare.7035908.

Other Posters
Dramsch, J. S., A. N. Christensen, and M. Lüthje (June 2019a). Physics and Deep

Learning - Incorporating prior knowledge in deep neural networks. doi: 10.6084/m9.
figshare.8217518.v1.

Dramsch, J. S. and M. Lüthje (2018c). Deep Learning: From Cats to 4D Seismic - Re-
ducing cycle time and model training cost in asset management. Tech. rep. Danish Hy-
drocarbon Research and Technology Centre. doi: 10.6084/m9.figshare.7422629.

Dramsch, J. S. (2017b). Edge detection in 3D seismic data. DHRTC PhD Day.

Invited Presentation
Dramsch, J. S. (Nov. 2019a). Cracking Open the Black Box – Making sense of Machine

Learning and Neural Networks. EAGE E-Lecture. url: https://www.youtube.com/
watch?v=5oOXTfUZQm0.

Dramsch, J. S. (June 2019b). Making sense of AI for a career in a changing industry.
EAGE Annual Meeting 2019.

Dramsch, J. S. (Sept. 2018a). 4D Seismics in Fracture Characterization – A machine
learning perspective. Company Talk - ConocoPhillips.

Dramsch, J. S. (Oct. 2018b). A practitioner’s guide to deep learning in geophysical
imaging. FORCE Velocity Modeling Meeting. doi: 10.6084/m9.figshare.7170299.

Dramsch, J. S. (July 2018d). Machine Learning Workshop. Heriot-Watt University,
ETLP.

MacBeth, C., R. Chassagne, and J. S. Dramsch (Nov. 2018). A guided discussion on
machine learning for 4D QI. ETLP Sponsor Meeting 2018.

Dramsch, J. S. (May 2017a). Edge detection in 3D seismic. DTU Vision Day.

https://doi.org/10.3997/2214-4609.201803020
https://doi.org/10.3997/2214-4609.201803020
https://doi.org/10.3997/2214-4609.201803020
https://doi.org/10.6084/m9.figshare.7035908
https://doi.org/10.6084/m9.figshare.8217518.v1
https://doi.org/10.6084/m9.figshare.8217518.v1
https://doi.org/10.6084/m9.figshare.7422629
https://www.youtube.com/watch?v=5oOXTfUZQm0
https://www.youtube.com/watch?v=5oOXTfUZQm0
https://doi.org/10.6084/m9.figshare.7170299


Contents
Abstract i

Dansk Resumé ii

Preface iii

Acknowledgements v

Disclaimer vii

Publication List ix
Book Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Journal Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Peer-Reviewed Conference Proceedings . . . . . . . . . . . . . . . . . . . . . . ix
Peer-Reviewed Workshop Proceedings . . . . . . . . . . . . . . . . . . . . . . ix

Publications Not Included xi
Journal Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Peer-Reviewed Conference Proceedings . . . . . . . . . . . . . . . . . . . . . . xi
Peer-Reviewed Workshop Proceedings . . . . . . . . . . . . . . . . . . . . . . xi

Open Source Software List xii
Open Source Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Reproducible Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Presentation List xv
Conference Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Workshop Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Workshop Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Other Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Other Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Invited Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Contents xvii

1 Introduction 1



xviii Contents

2 Methods & Theory 5
2.1 4D seismic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Machine Learning in Geoscience . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Contributions of this Study . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Unsupervised Geological Image Segmentation 45
3.1 Unsupervised Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Workshop Paper: Gaussian Mixture Models For Robust Unsupervised

Scanning-Electron Microscopy Image Segmentation Of North Sea Chalk . 49
3.3 Computational Granulometry . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Contributions of this Study . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Transfer learning in Automatic Seismic Interpretation 55
4.1 Training and Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Conference Paper: Deep learning seismic facies on state of the art CNN

architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Applications of Transfer Learning for Automatic Seismic Interpretation . 69
4.4 Contributions of this Study . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Complex-valued neural networks 71
5.1 Journal Paper: Complex-valued neural networks for machine learning on

non-stationary physical data . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Contributions of this Study . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Machine Learning in 4D Seismic Inversion 93
6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Training the Deep Neural Network for 4D Seismic Inversion . . . . . . . 95
6.4 Workshop Paper: Including Physics in Deep Learning – An example from

4D seismic pressure saturation inversion . . . . . . . . . . . . . . . . . . 97
6.5 Workshop Paper: Deep Learning Application for 4D Pressure Saturation

Inversion Compared to Bayesian Inversion on North Sea Data . . . . . . 102
6.6 Discussion of 4D Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.7 Contribution of this study . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 3D Time Warping for 4D Data 109
7.1 Diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Image Matching Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Dynamic Time and Image Warping . . . . . . . . . . . . . . . . . . . . . 112
7.4 Journal Paper: Deep Unsupervised 4D Seismic 3D Time-Shift Estimation

with Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 115
7.5 Contributions of This Study . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusion of this Thesis 139



Contents xix

A ImageNet Results 141

B Journal Papers 143
B.1 An Integrated Approach to Fracture Characterization of the Kraka Field 143
B.2 Deep neural network application for 4D seismic inversion to changes in

pressure and saturation: Optimizing the use of synthetic training datasets 156

C Conference Papers 179
C.1 Rapid seismic domain transfer: Seismic velocity inversion and modeling

using deep generative neural networks . . . . . . . . . . . . . . . . . . . . 179
C.2 Correlation of Fractures From Core, Borehole Images and Seismic Data

in a Chalk Reservoir in the Danish North Sea . . . . . . . . . . . . . . . 184

D Workshop Papers 189
D.1 Information Theory Considerations in Patch-based Training of Deep Neu-

ral Networks on Seismic Time-Series . . . . . . . . . . . . . . . . . . . . 189

E Reproducible Code 193
E.1 Unsupervised Geological Image Segmentation . . . . . . . . . . . . . . . 193
E.2 Transfer learning in Automatic Seismic Interpretation . . . . . . . . . . . 198
E.3 Complex-valued neural networks . . . . . . . . . . . . . . . . . . . . . . . 214
E.4 Machine Learning in 4D Seismic Inversion . . . . . . . . . . . . . . . . . 223
E.5 Software Manual: Keras Complex . . . . . . . . . . . . . . . . . . . . . . 250

Acronyms 269

Bibliography 271



xx



CHAPTER 1
Introduction

This thesis explores machine learning in geoscience with a special focus on deep learning
in 4D seismics. Recently, machine learning and neural networks in particular have made
essential impacts in many scientific disciplines, with geoscience exploring these new
approaches as well. This study contributes to this body of emerging work in deep neural
networks and computer vision systems for the modelling and analysis of geoscientific data.
The main contribution being a physics-based neural architecture for pressure-saturation
inversion and a novel algorithm for 3D timeshift extraction in 4D seismic.

The growing interest in machine learning sometimes overlooks the fact that the under-
lying idea of Machine Learning was introduced in 1950. Section 2.2 reviews the history
of Machine Learning with a special focus on geoscience. Geoscience and in particular
geophysics has followed the innovation in artificial intelligence and especially neural
networks closely. Early applications of neural networks include seismic processing and
seismic inversion. Moreover, Gaussian Processs were early introduced in geostatistics as
kriging, which have gained interest in a wider Machine Learning context as Gaussian
Process. Recently, Deep Learning becoming popular and particularly breakthroughs in
computer vision have sparked interest in applying machine learning computer vision to
Automatic Seismic Interpretation in the hopes for increased accuracy, reproducibility
and automation.

In recent years, 4D seismic itself has made an impact in geophysical reservoir analysis
and other geophysical areas. The method enables imaging of changes in the subsurface.
This is essential in hydrocarbon production, enabling extended production, reducing the
direct environmental footprint and ensuring resource safety. Moreover, it enables CO2
sequestration monitoring for reservoir and seal integrity and has applications in nuclear
test treaty compliance, waste storage, and deep geothermal monitoring. 4D seismic
matching has exposed deficits in 3D seismic processing, therefore furthered our under-
standing of amplitude-preserving and surface-consistent processing steps. Additionally,
furthering our understanding of in-situ validation of geomechanical concepts and update
of heterogeneous subsurface models.

The structure of this study is composed of topical groupings of five peer-reviewed
and two submitted publications into chapters. Each chapter will provide an individual
introduction to the topic and outline relevant theoretical and methodological aspects,
where the publication falls short. This is particularly relevant for the shorter workshop
and conference papers.

Chapter 2 provides a theoretical introduction into 4D seismic principles, followed by
a thorough overview of the development of machine learning with a special focus on
geoscience. This chapter focuses particularly on the development of Machine Learning
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applications in geoscience through history. The main contribution in this chapter is
a peer-reviewed book chapter “70 years of machine learning in geoscience in review”
published in Advances in Geophysics (Dramsch, 2020d).

Chapter 3 contains a workshop paper (Dramsch et al., 2018a), which explores the
application of unsupervised learning to the segmentation of chalk grains in Backscatter
Scanning-Electron Microscopy images. The chapter expands on the method and provides
a theoretical treatment of the methods applied in the short paper. The method is also
compared to classical image processing techniques. Then an overview of additional
computational granulometry based on the segmentation maps is presented to apply the
work and close out the chapter.

Chapter 4 discusses a conference paper contribution to Automatic Seismic Interpre-
tation using Deep Learning (Dramsch et al., 2018c). The paper uses transfer learning
of Neural Networks pre-trained on natural image data sets to fine-tune the network to
perform Automatic Seismic Interpretation on seismic data. The chapter expands on the
data and training of the Neural Network. The chapter then expands on the applications
that resulted from the paper, using the composition of Neural Networks into more ade-
quate architectures for a task that is called semantic segmentation, which more closely
resembles Automatic Seismic Interpretation.

Chapter 5 covers a journal paper on the application of complex-valued Convolutional
Neural Networks to seismic data (Dramsch et al., 2019f). These networks perform a
complex convolution in the Neural Network layers. The paper tests the hypothesis that
providing phase information explicitly can improve the capacity of the Convolutional
Neural Network, which is tested on an AutoEncoder architecture, which lossily com-
presses the data at different rates and measures the reconstruction error. The phase
information is derived directly from the seismic data via a Hilbert transform, hence
a Deep Neural Network could, in theory, extract this information automatically. For
this chapter, networks at varying compression were trained for both real-valued and
complex-valued networks to perform an adequate comparison.

Chapter 6 consists of two workshop papers which introduce a Deep Neural Network
architecture for 4D quantitative pressure-saturation inversion (Dramsch et al., 2019e;
Dramsch et al., 2019d). The Deep Neural Network (DNN) regression model implements a
layer that computes basic physical knowledge within the network architecture to stabilize
the network. The physical knowledge encoded in the layer is the Amplitude versus
Offset (AVO) gradient between the input seismic data. This data is passed into a
Variational AutoEncoder architecture. In this work, we show that this network can be
trained on simulation data and transferred to field data by applying Gaussian noise to
the noise-free simulation input data to condition the network to accept noisy inputs from
field data.

Chapter 7 is comprised of a re-submitted journal paper and introduces a robust
method for 3D time shift extraction in 4D data (Dramsch et al., 2019b). Time shifts
in 4D data are commonly extracted in 1D due to computational cost and often poor
performance of 3D methods. This method uses a self-supervised deep learning system
to extract the timeshift mapping of two seismic volumes without supplying a-priori
timeshift data. Moreover, the method limits the neural network to the extraction of
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the stationary timeshift but leaves the matching to a non-learning 3D interpolation to
increase the transparency of the method. Additionally, the method supplies uncertainty
values for the warp velocity. Constraining the possible 3D time shifts is vital to ensure
sensible results for the time shifts, as well as, the aligned monitor seismic. This is ensured
by implementing a geologically intuitive constraint on the 3D timeshifts, which prohibits
crossing or looping of reflectors after mapping the seismic volumes. This learning-based
method can be trained in advance, providing fast 3D results on previously unseen data,
which is essential in 4D seismic analysis.

Finally, Chapter 8 is the conclusion of this thesis recapitulating the contributions and
findings of the papers and scientific work. The contributions span multiple geoscientific
disciplines with a focus in geophysics and particularly 4D seismic unified by Machine
Learning.
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CHAPTER 2
Methods & Theory

This thesis applies Machine Learning methods to 4D seismic data. In this chapter I
introduce 4D seismic concepts and the motivation to acquire and analyze 4D seismic data.
I go on to introduce machine learning and review the development of machine learning
in itself and in the field of geoscience. The focus on this thesis is on Neural Networks,
particularly Deep Learning to geophysical problems. Considering recent developments
in computer vision, a focus on Convolutional Neural Networks, the developments and
break-throughs of this type of Neural Network (NN) and the innovations that lead to
the recent adoption of Machine Learning in geoscience are explored in a published book
chapter, reprinted here.

2.1 4D seismic
4D seismic is the analysis of seismic data that was acquired over the same location after
some calendar time has passed. The repeated imaging of the same subsurface location
highlights changes in the subsurface that can lead to improved understanding of subsur-
face processes and fluid movement. Exploration & Production companies, in particular,
have an interest in imaging hydrocarbon reservoirs (Johnston, 2013b). However, 4D seis-
mic imaging has broad applications for subsurface characterization, such as observing
volcanic activity (Londoño et al., 2018) or CO2 sequestration monitoring (Arts et al.,
2004).

The main applications of 4D seismic analysis, according to Yilmaz (2003) and John-
ston (2013a) include:

• Tracking fluid movement (steam, gas, and water)

• Monitoring pressure depletion and validating depletion plans

• Fault property estimation, i.e. sealing or leaking faults

• Locating bypassed oil in heterogeneous reservoirs

• Validating and updating geological and reservoir-simulation models

4D seismic data analysis suffers from the superposition of multiple effects on seismic
imaging. These effects include changes in the acquisition equipment due to technological
advances, changes in acquisition geometry (source-receiver mismatch), as well as physical
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changes in the subsurface (Yilmaz, 2003; Johnston, 2013b). These physical changes are
in part due to fluid movement in the subsurface (Lumley, 1995), as well as, geological
changes due to compaction and expansion (Hatchell et al., 2005a). These geomechanical
effects change the position of the reflectors, the thickness of stratigraphy, and the physical
properties such as density and wave velocity (Herwanger, 2015).

Successful 4D applications rely on careful acquisition planning, closely matching the
mismatch of the source (∆S) and receiver (∆R). This awareness has generally improved
the repeatability of seismic acquisition; however, the Normalized Root Mean Squared
Error (NRMS) remains to be an essential measure of noise sources that deteriorate the
4D seismic analysis. Moreover, 4D seismic analysis has brought to light that some 3D
seismic processing workflows are not as repeatable and amplitude-preserving as they
were thought to be (Lumley, 2001). Modern processing flows include co-processing of
the base and monitor seismic volumes with specialized tools to reduce differences from
processing (Johnston, 2013a).

The standard analysis tool in 4D seismic interpretation is amplitude differences
(Johnston, 2013b). Differences can among others stem from fluid movement or replace-
ment, i.e. oil, gas, or brine, as well as, changes in the rock matrix due to compaction,
temperature changes, and movement of injected CO2 plumes. Usually, a simple dif-
ference of the 3D seismic volumes will not yield satisfactory results due to small-scale
fluctuations in both arrival times and amplitudes, making time-shift analysis a vital
process to match the reflection events. These time-shift values are a valuable source of
information themselves (Hall et al., 2002; Hatchell et al., 2005c), considering their sole
dependence on wavefield kinematics, time shifts tend to be a more robust measurement
than amplitude differences (Johnston, 2013b).

Considering normal incidence on a horizontal layer of thickness z and a P-wave
velocity v with a traveltime t, we can express the changes in traveltime as:

∆t
t

= ∆z
z
− ∆v

v
, (2.1)

for homogeneous isotropic v and small changes in z and v. Originally developed in
Hatchell et al. (2005c), with a rigorous integral derivation presented in MacBeth et al.
(2019).

The vertical strain ∆z
z

directly relates to the geomechanical strain ξzz, describing the
vertical strain on the vertical surface of an infinitesimal element (Herwanger, 2015). In-
dependently Hatchell et al. (2005c) and Røste et al. (2006) developed a single-parameter
solution to relate velocity changes and vertical strain

∆v
v

= −Rξzz (2.2)

with R being the single parameter Hatchell-Bourne-Røste (HBR)-factor (Hatchell et al.,
2005a; MacBeth et al., 2019). The HBR being a lithological constant, we can relate
(2.2) and (2.1) and obtain a direct relationship between the vertical strain ξzz and the
time shift ∆t for a given lithology with property R
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∆t = t · (1 +R) · ξzz. (2.3)
Contingent on the assumption of zero-offset incidence, homogeneous velocity and

isotropy, time-shift extraction is mostly performed in the z-direction by comparing traces
directly. Prominently, the 1D windowed cross-correlation is used due to its computa-
tional speed and general lack of limiting underlying assumptions (Rickett et al., 2001).
The main drawback of this method is, however, that the result is highly dependent on the
window-size and susceptible to noise. Other methods for post-stack seismic time shift
extraction include Dynamic Time Warping (DTW) (Hale, 2013b) and inversion-based
approaches (Rickett et al., 2007b).

More recently, research into pre-stack time shift extraction and 3D-based methods
has been conducted. These methods relax the constraints of some assumptions of 1D
applications (Ghaderi et al., 2005; Hall et al., 2002). 3D time shifts can capture the
subsurface movement of reflectors and account for 3D effects of the ∆R/∆S acquisition
mismatch, which effect seismic illumination.

Quantitative Interpretation (QI) extends the interpretation of 4D changes to esti-
mate fluid saturation and pressure changes within the reservoir. The subsurface changes
recorded by the seismic data can be related numerically to subsurface changes. Taran-
tola (2005) defines the scientific procedure for the study of a physical system loosely as
a three-step process involving parameterization of the system, forward modelling, and
inverse modelling, additionally defining the inversion as the only deductive method. The
inversion process is usually non-unique, where multiple causal processes could explain
an observation. Therefore prior information can often be beneficial in applications such
as Bayesian inversion. In 4D seismic data particularly, decoupling of pressure and satu-
ration changes is non-trivial and relies on pre-stack or angle-stack information (Landrø,
2001). This process is, however, highly desirable with the benefit of quantifying the
subsurface changes from observed seismic data directly.

Active areas of research in 4D seismic are the use of 4D seismic data to estimate
saturation and pressure changes quantitatively, however, these approaches often depend
on reliable rock-physics models. Moreover, volumetric time-shift estimation as opposed
to trace-wise time-shift extraction, is particularly beneficial to quantitative pre-stack
seismic analysis. Additional research in extractive data-based methods and model-based
approaches investigate how much information is available directly from the data and
what information is available from the modelling feedback-loop.

Lately there has been an increased focus on using machine learning in 4D seismic and
the wider field of geoscience. Many 4D seismic approaches depend on statistical methods,
one example being time-shift extraction by trace-wise windowed cross-correlation, which
lends itself to machine learning applications. The next chapter will give a detailed review
of the use of machine learning in geoscience, while introducing important theoretical
concepts for this thesis.
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2.2 Machine Learning in Geoscience
In Section 2.2 a published peer-reviewed book chapter “70 years of machine learning in
geoscience in review” provides a treatment of the history and recent advancements and
developments of machine learning in geoscience (Dramsch, 2020d). The book chapter
covers the historical development of machine learning with a focus on co-developments
with geoscience and provides the theoretical background for this thesis. Section 2.2.1.2
specifically gives a treatment of Neural Networks, the main driver of modern Machine
Learning applications. Section 2.2.2.4 goes on to discuss the development of Deep Learn-
ing, with Section 2.2.2.6 going into detail about Convolutional Neural Network architec-
tures that are particularly relevant to both this thesis and the wider field of Machine
Learning in geoscience.

Essential machine learning concepts that are used throughout this thesis will be
introduced. This includes DNNs and Convolutional Neural Networks (CNNs), as well
as, common natural image benchmarks, i.e. ImageNet. Moreover, the Convolutional
Neural Networks architectures VGG-16 and ResNet are discussed, which are used in
Chapter 4. This chapter goes on to discuss the U-Net architecture, which is at the core
of the Voxelmorph algorithm discussed in Chapter 7. Moreover, Section 2.2 discusses
composition of Neural Networks as applied to geoscience.

In addition Support Vector Machines, kriging and Gaussian Processs, and Random
Forests are discussed as they are important Machine Learning models used in geoscience
detailed in their respective sections. Gaussian Processs in particular have a rich history
in geoscience, originating in geostatistics, having reached the wider Machine Learning
community. These methods are particularly suitable for problems on smaller datasets,
where Neural Networks would overfit on the dataset and not generalize to unseen data.

The review shows the use of modern Machine Learning software applications and
discusses the necessity of thorough model validation. The machine learning applications
in this thesis split the labelled data into subsets that are used for training and validation.
This serves as a basic test of generalization of the individual Machine Learning model
to unseen data.
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Book Chapter: 70 years of machine learning in
geoscience in review

Published as a peer-reviewed book chapter in Advances in Geophysics, Vol.
61, Machine Learning and Artificial Intelligence in Geosciences

Abstract: This review gives an overview of the development of machine learning in
geoscience. A thorough analysis of the co-developments of machine learning applications
throughout the last 70 years relates the recent enthusiasm for machine learning to de-
velopments in geoscience. I explore the shift of kriging towards a mainstream machine
learning method and the historic application of neural networks in geoscience, following
the general trend of machine learning enthusiasm through the decades. Furthermore,
this chapter explores the shift from mathematical fundamentals and knowledge in soft-
ware development towards skills in model validation, applied statistics, and integrated
subject matter expertise. The review is interspersed with code examples to complement
the theoretical foundations and illustrate model validation and machine learning explain-
ability for science. The scope of this review includes various shallow machine learning
methods, e.g. Decision Trees, Random Forests, Support-Vector Machines, and Gaus-
sian Processes, as well as, deep neural networks, including feed-forward neural networks,
convolutional neural networks, recurrent neural networks and generative adversarial net-
works. Regarding geoscience, the review has a bias towards geophysics but aims to strike
a balance with geochemistry, geostatistics, and geology, however excludes remote sens-
ing, as this would exceed the scope. In general, I aim to provide context for the recent
enthusiasm surrounding deep learning with respect to research, hardware, and software
developments that enable successful application of shallow and deep machine learning
in all disciplines of Earth science.

J. S. Dramsch (Sept. 2020d). “70 years of machine learning in geoscience in review”. In:
Advances in Geophysics. Ed. by B. Moseley and L. Krischer. Published, Peer-Reviewed,
Section 2.2. Academic Press. Chap. 4. isbn: 9780128216699

In recent years machine learning has become an increasingly important interdisci-
plinary tool that has advanced several fields of science, such as biology (Ching et al.,
2018), chemistry (Schütt et al., 2017a), medicine (Shen et al., 2017) and pharmacology
(Kadurin et al., 2017). Specifically, the method of deep neural networks has found wide
application. While geoscience was slower in the adoption, bibliometrics show the adop-
tion of deep learning in all aspects of geoscience. Most subdisciplines of geoscience have
been treated to a review of machine learning. Remote sensing has been an early adopter
(Lary et al., 2016), with geomorphology (Valentine et al., 2016), solid Earth geoscience
(Bergen et al., 2019), hydrogeophysics (Shen, 2018), seismology (Kong et al., 2019), seis-
mic interpretation (Wang et al., 2018) and geochemistry (Zuo et al., 2019) following
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suite. Climate change, in particular, has received a thorough treatment of the potential
impact of varying machine learning methods for modelling, engineering and mitigation
to address the problem (Rolnick et al., 2019). This review addresses the development of
applied statistics and machine learning in the wider discipline of geoscience in the past
70 years and aims to provide context for the recent increase in interest and successes in
machine learning and its challenges1.

Machine learning (ML) is deeply rooted in applied statistics, building computational
models that use inference and pattern recognition instead of explicit sets of rules. Ma-
chine learning is generally regarded as a sub-field of artificial intelligence (AI), with
the notion of AI first being introduced by Turing (1950). Samuel (1959) coined the
term machine learning itself, with Mitchell et al. (1997) providing a commonly quoted
definition:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E.

Mitchell et al. (1997)

This means that a machine learning model is defined by a combination of require-
ments. A task such as, classification, regression, or clustering is improved by conditioning
of the model on a training data set. The performance of the model is measured with
regard to a loss, also called metric, which quantifies the performance of a machine learn-
ing model on the provided data. In regression, this would be measuring the misfit of
the data from the expected values. Commonly, the model improves with exposure to
additional samples of data. Eventually, a good model generalizes to unseen data, which
was not part of the training set, on the same task the model was trained to perform.

Accordingly, many mathematical and statistical methods and concepts, including
Bayes’ rule (Bayes, 1763), least-squares (Legendre, 1805), and Markov models (Markov,
1906; Markov, 1971), are applied in machine learning. Gaussian processes stand out as
they originate in time series applications (Kolmogorov, 1939) and geostatistics (Krige,
1951), which roots this machine learning application in geoscience (Rasmussen, 2003).
”Kriging” originally applied two-dimensional Gaussian processes to the prediction of
gold mine valuation and has since found wide application in geostatistics. Generally,
Matheron (1963) is credited with formalizing the mathematics of kriging and developing
it further in the following decades.

Between 1950 and 2020 much has changed. Computational resources are now widely
available both as hardware and software, with high-performance compute being afford-
able to anyone from cloud computing vendors. High-quality software for machine learn-
ing is widely available through the free and open-source software movement, with major
companies (Google, Facebook, Microsoft) competing for the usage of their open-source

1The author of this manuscript has a background in geophysics, exploration geoscience, and active
source 4D seismic. While this skews the expertise, they attempt to give a full overview over developments
in all of geoscience with the minimum amount of bias possible.
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machine learning frameworks (Tensorflow, Pytorch, CNTK2) and independent devel-
opments reaching wide applications such as scikit-learn (Pedregosa et al., 2011) and
xgboost (Chen et al., 2016).

Figure 2.1: Machine Learning timeline from (Dramsch, 2019a). Neural Networks: (Rus-
sell et al., 2010); Kriging: (Krige, 1951); Decision Trees: (Belson, 1959); Nearest Neigh-
bours: (Cover et al., 1967); Automatic Differentiation: (Linnainmaa, 1970); Convo-
lutional Neural Networks: (Fukushima, 1980; LeCun et al., 2015); Recurrent Neural
Networks: (Hopfield, 1982); Backpropagation: (Kelley, 1960; Bryson, 1961; Dreyfus,
1962; Rumelhart et al., 1988b); Reinforcement Learning: (Watkins, 1989); Support Vec-
tor Machines: (Cortes et al., 1995); Random Forests: (Ho, 1995); LSTM: (Hochreiter
et al., 1997); Torch Library: (Collobert et al., 2002); ImageNet: (Deng et al., 2009b);
Scikit-Learn: (Pedregosa et al., 2011); LibSVM: (Chang et al., 2011); Generative Ad-
versarial Networks: (Goodfellow et al., 2014b); Tensorflow: (Martı́n Abadi et al., 2015);
XGBoost: (Chen et al., 2016)

Nevertheless, investigations of machine learning in geoscience are not a novel de-
velopment. The research into machine learning follows interest in artificial intelligence
closely. Since its inception, artificial intelligence has experienced two periods of a decline
in interest and trust, which has impacted negatively upon its funding. Developments in
geoscience follow this wide-spread cycle of enthusiasm and loss of interest with a time
lag of a few years. This may be the result of a variety of factors, including research
funding availability and a change in willingness to publish results.

2.2.1 Historic Machine Learning in Geoscience
The 1950s and 1960s were decades of machine learning optimism, with machines learn-
ing to play simple games and perform tasks like route mapping. Intuitive methods like
k-means, Markov models, and decision trees have been used as early as the 1960s in geo-
science. K-means was used to describe the cyclicity of sediment deposits (Preston et al.,
1964). Krumbein et al. (1969) give a thorough treatment of the mathematical founda-
tions of Markov chains and embedded Markov chains in a geological context through

2Deprecated 2019
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application to sedimentological processes, which also provides a comprehensive bibliog-
raphy of Markov processes in geology. Some selected examples of early applications
of Markov chains are found in sedimentology (Schwarzacher, 1972), well log analysis
(Agterberg, 1966), hydrology (Matalas, 1967), and volcanology (Wickman, 1968). Deci-
sion tree-based methods found early applications in economic geology and prospectivity
mapping (Newendorp, 1976; Reddy et al., 1991).

The 1970s were left with few developments in both the methods of machine learning,
as well as, applications and adoption in geoscience (cf. Figure 2.1), due to the ”first AI
winter” after initial expectations were not met. Nevertheless, as kriging was not consid-
ered an AI technology, it was unaffected by this cultural shift and found applications
in mining (Huijbregts et al., 1970), oceanography (Chiles et al., 1975), and hydrology
(Delhomme, 1978). This was in part due to superior results over other interpolation
techniques, but also the provision of uncertainty measures.

2.2.1.1 Expert Systems to Knowledge-Driven AI
The 1980s marked uptake in interest in machine learning and artificial intelligence
through so-called ”expert systems” and corresponding specialized hardware. While neu-
ral networks were introduced in 1950, the tools of automatic differentiation and back-
propagation for error-correcting machine learning were necessary to spark their adoption
in geophysics in the late 1980s. Zhao et al. (1988) performed seismic deconvolution with
a recurrent neural network (Hopfield network). Dowla et al. (1990) discriminated be-
tween natural earthquakes and underground nuclear explosions using feed-forward neural
networks. An ensemble of networks was able to achieve 97 % accuracy for nuclear moni-
toring. Moreover, the researchers inspected the network to gain the insight that the ratio
of particular input spectra was beneficial to the discrimination of seismological events
to the network. However, in practice the neural networks underperformed on uncurated
data, which is often the case in comparison to published results. Huang et al. (1990)
presented work on self-organizing maps (also Kohonen networks), a special type of un-
supervised neural network applied to pick seismic horizons. The field of geostatistics
saw a formalization of theory and an uptake in interest with Matheron et al. (1981) for-
malizing the relationship of spline-interpolation and kriging and Dubrule (1984) further
develop the theory and apply it to well data. At this point, kriging is well-established
in the mining industry as well as other disciplines that rely on spatial data, including
the successful analysis and construction of the Channel tunnel (Chilès et al., 2018). The
late 1980s then marked the second AI winter, where expensive machines tuned to run
”expert systems” were outperformed by desktop hardware from non-specialist vendors,
causing the collapse of a half-billion-dollar hardware industry. Moreover, government
agencies cut funding in AI specifically.

The 1990s are generally regarded as the shift from a knowledge-driven to a data-
driven approach in machine learning. The term AI and especially expert systems were
almost exclusively used in computer gaming and regarded with cynicism and as a fail-
ure in the scientific world. In the background, however, with research into applied
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statistics and machine learning, this decade marked the inception of Support-Vector
Machines (SVM) (Cortes et al., 1995), the tree-based method Random Forests (RF)
(Ho, 1995), and a specific type of recurrent neural network (RNN) Long Short-Term
Memories (LSTM) (Hochreiter et al., 1997). SVMs were utilized for land usage classifi-
cation in remote sensing early on (Hermes et al., 1999). Geophysics applied SVMs a few
years later to approximate the Zoeppritz equations for AVO inversion, outperforming
linearized inversion (Kuzma, 2003). Random Forests, however, were delayed in broader
adoption, due to the term ”random forests” only being coined in 2001 (Breiman, 2001)
and the statistical basis initially being less rigorous and implementation being more com-
plicated. LSTMs necessitate large amounts of data for training and can be expensive
to train, after further development in 2011 (Ciresan et al., 2011) it gained popularity in
commercial time series applications particularly speech and audio analysis.

2.2.1.2 Neural Networks
McCormack (1991) marks the first review of the emerging tool of neural networks in
geophysics. The paper goes into the mathematical details and explores pattern recogni-
tion. The author summarizes neural network applications over the 30 years prior to the
review and presents worked examples in automated well-log analysis and seismic trace
editing. The review comes to the conclusion that neural networks are, in fact, good func-
tion approximators, taking over tasks that were previously reserved for human work. He
criticizes slow training, the cost of retraining networks upon new knowledge, imprecision
of outputs, non-optimal training results, and the black box property of neural networks.
The main conclusion sees the implementation of neural networks in conventional com-
putation and expert systems to leverage the pattern recognition of networks with the
advantages of conventional computer systems.

Neural networks are the primary subject of the modern day machine learning interest,
however, significant developments leading up to these successes were made prior to the
1990s. The first neural network machine was constructed by Minsky [described in Russell
et al. (2010)] and soon followed by the ”Perceptron”, a binary decision boundary learner
(Rosenblatt, 1958). This decision was calculated as follows:

oj = σ
(∑

j wijxi + b
)

= σ (aj)

=

1 aj > 0
0 otherwise

(2.4)

It describes a linear system with the output o, the linear activation a of the input data
x, the index of the source i and target node j, the trainable weights w, the trainable
bias b and a binary activation function σ. The activation function σ in particular has
received ample attention since its inception. During this period, a binary σ became
uncommon and was replaced by non-linear mathematical functions. Neural networks are
commonly trained by gradient descent, therefore, differentiable functions like sigmoid or
tanh, allowing for the activation o of each neuron in a neural network to be continuous.
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Figure 2.2: Single layer neural network as described in equation 2.4. Two inputs xi are
multiplied by the weights wij and summed with the biases bj. Subsequently an activation
function σ is applied to obtain out outputs oj.

Deep learning (Dechter, 1986) expands on this concept. It is the combination of
multiple layers of neurons in a neural network. These deep networks learn representations
with multiple levels of abstraction and can be expressed using equation 2.4 as input
neurons to the next layer

ok = σ (∑
k wjk · oj + b)

= σ
(∑

k wjk · σ
(∑

j wijxi + b
)

+ b
) (2.5)

Figure 2.3: Deep multi-layer neural network as described in equation 2.5.

Röth et al. (1994) apply these building blocks of multi-layered neural networks with
sigmoid activation to perform seismic inversion. They successfully invert low-noise and
noise-free data on small training data. The authors note that the approach is susceptible
to errors at low signal-to-noise ratios and coherent noise sources. Further applications
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include electromagnetic subsurface localization (Poulton et al., 1992), magnetotelluric
inversion via Hopfield neural networks (Zhang et al., 1997), and geomechanical microfrac-
tures modelling in triaxial compression tests (Feng et al., 1998).

Figure 2.4: Sigmoid activation function (red) and derivative (blue) to train multi-layer
Neural Network described in equation 2.5.

2.2.1.3 Kriging and Gaussian Processes
Cressie (1990) review the history of kriging, prompted by the uptake of interest in geo-
statistics. The author defines kriging as Best Linear Unbiased Prediction and reviews the
historical co-development of disciplines. Similar concepts were developed with mining,
meteorology, physics, plant and animal breeding, and geodesy that relied on optimal
spatial prediction. Later, Williams (1998) provide a thorough treatment of Gaussian
Processes, in the light of recent successes of neural networks.

An alternative method of putting a prior over functions is to use a Gaussian
process (GP) prior over functions. This idea has been used for a long time
in the spatial statistics community under the name of ”kriging”, although it
seems to have been largely ignored as a general-purpose regression method.

Williams (1998)

Overall, Gaussian Processes benefit from the fact that a Gaussian distribution will
stay Gaussian under conditioning. That means that we can use Gaussian distributions
in this machine learning process and they will produce a smooth Gaussian result af-
ter conditioning on the training data. To become a universal machine learning model,
Gaussian Processes have to be able to describe infinitely many dimensions. Instead of
storing infinite values to describe this random process, Gaussian Processes go the path
of describing a distribution over functions that can produce each value when required.

p(x) ≈ GP (µ(x), k(x, x′)) , (2.6)
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The multivariate distribution over functions p(x) is described by the Gaussian Pro-
cess depends on mean a function µ(x) and a covariance function k(x, x′). It follows that
choosing an appropriate mean and covariance function, also known as kernel, is essen-
tial. Very commonly, the mean function is chosen to be zero, as this simplifies some of
the math. Therefore, data with a non-zero mean is commonly centered to comply with
this assumption (Görtler et al., 2019). Choosing an appropriate kernel for the machine
learning task is one of the benefits of the Gaussian Process. The kernel is where expert
knowledge can be incorporated into data, e.g. seasonality metereological data can be
described by a periodic covariance function.

Figure 2.5: Gaussian Process separating two classes with different kernels. This image
presents a 2D slice out of a 3D decision space. The decision boundary learnt from the
data is visible, as well as the prediction in every location of the 2D slice. The two kernels
presented are a linear kernel and a radial basis function (RBF) kernel, which show a
significant discrepancy in performance. The bottom right number shows the accuracy
on unseen test data. The linear kernel achieves 71 % accuracy, while the RBF kernel
achieves 90 %.

Figure 2.5 present a 2D slice of 3D data with two classes. This binary problem can be
approached by applying a Gaussian Process to it. In the second panel, a linear kernel is
shown, which predicts the data relatively poorly with an accuracy of 71 %. A radial basis
function (RBF) kernel, shown in the third panel generalizes to unseen test data with
an accuracy of 90 %. This figure shows how a trained Gaussian Process would predict
any new data point presented to the model. The linear kernel would predict any data
in the top part to be blue (Class 0) and any data in the bottom part to be red (Class 1).
The RBF kernel, which we explore further in the subsection introducing support-vector
machines, separates the prediction into four uneven quadrants. The choice of kernel
is very important in Gaussian Processes and research into extracting specific kernels is
ongoing (Duvenaud, 2014).

In a more practical sense, Gaussian processes are computationally expensive, as an
n × n matrix must be inverted, with n being the number of samples. This results in a
space complexity of O(n2) and a time complexity O(n3) (Williams et al., 2006). This
makes Gaussian Processes most feasible for smaller data problems, which is one explana-
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tion for their rapid uptake in geoscience. An approximate computation of the inverted
matrix is possible using the Conjugate Gradient (CG) optimization method, which can
be stopped early with a maximum time cost of O(n3) (Williams et al., 2006). For prob-
lems with larger data sets, neural networks become feasible due to being computationally
cheaper than Gaussian Processes, regularization on large data sets being viable, as well
as, their flexibility to model a wide variety of functions and objectives. Regularization
being essential as neural networks tend to not ”overfit” and simply memorize the training
data, instead of learning a generalizable relationship of the data. Interestingly, Hornik
et al. (1989) showed that neural networks are a universal function approximator as the
number of weights tend to infinity, and Neal (1996) were able to show that the infinitely
wide stochastic neural network converges to a Gaussian Process. Oftentimes Gaussian
Processes are trained on a subset of a large data set to avoid the computational cost.
Gaussian Processes have seen successful application on a wide variety of problems and
domains that benefit from expert knowledge.

The 2000s were opened with a review by Baan et al. (2000) recapitulating the most
recent geophysical applications in neural networks. They went into much detail on the
neural networks theory and the difficulties in building and training these models. The
authors identify the following subsurface geoscience applications through history: First-
break picking, electromagnetics, magnetotellurics, seismic inversion, shear-wave splitting,
well log analysis, trace editing, seismic deconvolution, and event classification. They
reveal a strong focus on exploration geophysics. The authors evaluated the application
of neural networks as subpar to physics-based approaches and concluded that neural
networks are too expensive and complex to be of real value in geoscience. This sentiment
is consistent with the broader perception of artificial intelligence during this decade.
Artificial intelligence and expert systems over-promised human-like performance, causing
a shift in focus on research into specialized sub-fields, e.g. machine learning, fuzzy logic,
and cognitive systems.

2.2.2 Contemporary Machine Learning in Geoscience
Mjolsness et al. (2001) review machine learning in a broader context outside of explo-
ration geoscience. The authors discuss recent successes in applications of remote sensing
and robotic geology using machine learning models. They review graphical models, (hid-
den) Markov models, and SVMs and go on to disseminate the limitations of applications
to vector data and poor performance when applied to rich data, such as graphs and text
data. Moreover, the authors from NASA JPL go into detail on pattern recognition in
automated rovers to identify geological prospects on Mars. They state:

The scientific need for geological feature catalogs has led to multiyear hu-
man surveys of Mars orbital imagery yielding tens of thousands of cataloged,
characterized features including impact craters, faults, and ridges.

Mjolsness et al. (2001)
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The review points out the profound impact SVMs have on identifying geomorphological
features without modelling the underlying processes.

2.2.2.1 Modern Machine Learning Tools
This decade of the 2000s introduces a shift in tooling, which is a direct contributor to
the recent increase in adoption and research of both shallow and deep machine learning
research.

Machine Learning software has been primarily comprised of proprietary software
like Matlab™with the Neural Networks Toolbox and Wolfram Mathematica™or inde-
pendent university projects like the Stuttgart Neural Network Simulator (SNNS). These
tools were generally closed source and hard or impossible to extend and could be difficult
to operate due to limited accompanying documentation. Early open-source projects in-
clude WEKA (Witten et al., 2005), a graphical user interface to build machine learning
and data mining projects. Shortly after that, LibSVM was released as free open-source
software (FOSS) (Chang et al., 2011), which implements support vector machines effi-
ciently. It is still used in many other libraries to this day, including WEKA (Chang et al.,
2011). Torch was then released in 2002, which is a machine learning library with a focus
on neural networks. While it has been discontinued in its original implementation in the
programming language Lua (Collobert et al., 2002), PyTorch, the reimplementation in
the programming language Python, is one of the leading deep learning frameworks at the
time of writing (Paszke et al., 2017). In 2007, the libraries Theano and scikit-learn were
released openly licensed in Python (Team, 2016; Pedregosa et al., 2011). Theano is a
neural network library that was a tool developed at the Montreal Institute for Learning
Algorithms (MILA) and ceased development in 2017 after strong industrial developers
had released openly licensed deep learning frameworks. Scikit-learn implements many
different machine learning algorithms, including SVMs, Random Forests and single-layer
neural networks, as well as utility functions including cross-validation, stratification, met-
rics and train-test splitting, necessary for robust machine learning model building and
evaluation.

2.2.2.2 Support-Vector Machines
The impact of scikit-learn has shaped the current machine learning software package
by implementing a unified application programming interface (API) (Buitinck et al.,
2013). This API is explored by example in the following code snippets, the code can be
obtained at Dramsch (2020c). First, we generate a classification dataset using a utility
function. The make_classification function takes different arguments to adjust the
desired arguments, we are generating 5000 samples (n_samples) for two classes, with five
features (n_features), of which three features are actually relevant to the classification
(n_informative). The data is stored in X, whereas the labels are contained in y.

1 # Generate random classification dataset for example
2 from sklearn.datasets import make_classification
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3 X, y = make_classification(n_samples=5000, n_features=5,
4 n_informative=3, n_redundant=0,
5 random_state=0, shuffle=False)

It is good practice to divide the available labeled data into a training data set and a val-
idation or test data set. This split ensures that models can be evaluated on unseen data
to test the generalization to unseen samples. The utility function train_test_split
takes an arbitrary amount of input arrays and separates them according to specified
arguments. In this case 25% of the data are kept for the hold-out validation set and not
used in training. The random_state is fixed to make these examples reproducible.

1 # Split data into train and validation set
2 from sklearn.model_selection import train_test_split
3 X_train, X_test, y_train, y_test = train_test_split(X, y,
4 test_size=.25,
5 random_state=0)

Then we need to define a machine learning model, considering the previous discussion
of high impact machine learning models, the first example is an SVM classifier. This
example uses the default values for hyperparameters of the SVM classifier, for best results
on real-world problems these have to be adjusted. The machine learning training is
always done by calling classifier.fit(X, y) on the classifier object, which in this case
is the SVM object. In more detail, the .fit() method implements an optimization loop
that will condition the model to the training data by minimizing the defined loss function.
In the case of the SVM classification the parameters are adjusted to optimize a hinge
loss, outlined in equation 2.8. The trained model scikit-learn model contains information
about all its hyperparameters in addition to the trained model, shown below. The
exact meaning of all these hyperparameters is laid out in the scikit-learn documentation
(Buitinck et al., 2013).

1 # Define and train a Support Vector Machine Classifier
2 from sklearn.svm import SVC
3 svm = SVC(random_state=0)
4 svm.fit(X_train, y_train)
5

6 >>> SVC(C=1.0, break_ties=False, cache_size=200,
7 class_weight=None, coef0=0.0, degree=3,
8 decision_function_shape='ovr', gamma='scale',
9 kernel='rbf', max_iter=-1, probability=False,

10 random_state=0, shrinking=True, tol=0.001,
11 verbose=False)

The trained SVM can the be used to predict on new data, by calling classifier.predict(data)
on the trained classifier object. The new data has to contain four features like the train-
ing data did. Generally, machine learning models always need to be trained on the same
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set of input features as the data available for prediction. The .predict() method out-
puts the most likely estimate on the new data to generate predictions. In the following
code snippet, three predictions on three input vectors are performed on the previously
trained model.

1 # Predict on new data with trained SVM
2 print(svm.predict([[0, 0, 0, 0, 0],
3 [-1, -1, -1, -1, -1],
4 [1, 1, 1, 1, 1]]))
5 >>> [1 0 1]

The blackbox model should be evaluated with the classifier.score() function. Eval-
uating the performance on the training data set gives an indication how well the model
is performing, but this is generally not enough to gauge the performance of machine
learning models. In addition, the trained model has to be evaluated on the hold-out
set, a dataset the model has not been exposed to during training. This avoids that the
model only performs well on the training data by ”memorization” instead of extracting
meaningful generalizable relationships, an effect called overfitting. In this example the
hyperparameters are left to the default values, in real-life applications hyperparameters
are usually adjusted to build better models. This can lead to an addition meta-level of
overfitting on the hold-out set, which necessitates an additional third hold-out set to test
the generalizability of the trained model with optimized hyperparameters. The default
score uses the class accuracy, which suggests our model is approximately 90% correct.
Similar train and test scores indicate that the model learned a generalizable model, en-
abling prediction on unseen data without a performance loss. Large differences between
the training score and test score indicate either overfitting, in the case of a better training
score. A higher test score than training score can be an indication of a deeper problem
with the data split, scoring, class imbalances, and needs to be investigated by means of
external cross-validation, building standard ”dummy” models, independence tests, and
further manual investigations.

1 # Score SVM on train and test data
2 print(svm.score(X_train, y_train))
3 print(svm.score(X_test, y_test))
4 >>> 0.9098666666666667
5 >>> 0.9032

Support-vector machines can be employed for each class of machine learning problem,
i.e. classification, regression, and clustering. In a two-class problem, the algorithm
considers the n-dimensional input and attempts to find a (n−1)-dimensional hyperplane
that separates these input data points. The problem is trivial if the two classes are
linearly separable, also called a hard margin. The plane can pass the two classes of data
without ambiguity. For data with an overlap, which is usually the case, the problem
becomes an optimization problem to fit the ideal hyperplane. The hinge loss provides
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Figure 2.6: Example of Support Vector Machine separating two classes, showing the
decision boundary learnt from the data. The data contains three informative features,
the decision boundary is therefore three dimensional, shown is a central slice of data
points in 2D. (A video is available at (Dramsch, 2020a))

the ideal loss function for this problem, yielding 0 if none of the data overlap, but a
linear residual for overlapping points that can be minimized:

max (0, (1− yi(w⃗ · x⃗i − b))) , (2.7)

with yi being the current target label and w⃗ · x⃗i − b being the hyperplane under consid-
eration. The hyperplane consists of w the normal vector and point x, with the offset b.
This leads the algorithm to optimize[

1
n

n∑
i=1

max (0, 1− yi(w · xi − b))
]

+ λ∥w∥2, (2.8)

with λ being a scaling factor. For small λ the loss becomes the hard margin classifier
for linearly separable problems. The nature of the algorithm dictates that only values
for x⃗ close to the hyperplane define the hyperplane itself; these values are called the
support vectors.

The SVM algorithm would not be as successful if it were simply a linear classifier.
Some data can become linearly separable in higher dimensions. This, however, poses the
question of how many dimensions should be searched, because of the exponential cost in
computation that follows due to the increase of dimensionality (also known as the curse
of dimensionality). Instead, the ”kernel trick” was proposed (Aizerman, 1964), which
defines a set of values that are applied to the input data simply via the dot product. A
common kernel is the radial basis function (RBF), which is also the kernel we applied
in the example. The kernel is defined as:
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k (x⃗i, x⃗j)→ exp
(
−γ∥x⃗i − x⃗j∥2

)
(2.9)

This specifically defines the Gaussian Radial Basis Function of every input data point
with regard to a central point. This transformation can be performed with other func-
tions (or kernels), such as, polynomials or the sigmoid function. The RBF will transform
the data according to the distance between xi and Xj, this can be seen in Figure 2.7.
This results in the decision surface in Figure 2.6 consisting of various Gaussian areas.
The RBF is generally regarded as a good default, in part, due to being translation
invariant (i.e. stationary) and smoothly varying.

Figure 2.7: Samples from two classes that are not linearly separable input data (left).
Applying a Gaussian Radial Basis Function centered around (0.4, 0.33) with λ = .5
results in the two classes being linearly separable.

An important topic in machine learning is explainability, which inspects the influence
of input variables on the prediction. We can employ the utility function permutation_importance
to inspect any model and how they perform with regard to their input features (Breiman,
2001). The permutation importance evaluates how well the blackbox model performs,
when a feature is not available. Practically, a feature is replaced with random noise.
Subsequently, the score is calculated, which provides a representation how informative
a feature is compared to noise. The data we generated in the first example contains
three informative features and two random data columns. The mean values of the calcu-
lated importances show that three features are estimated to be three magnitudes more
important, with the second feature containing the maximum amount of information to
predict the labels.

1 # Calculate permutation importance of SVM model
2 from sklearn.inspection import permutation_importance
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3 importances = permutation_importance(svm, X_train, y_train,
4 n_repeats=10, random_state=0)
5

6 # Show mean value of importances and the ranking
7 print(importances.importances_mean)
8 print(importances.importances_mean.argsort())
9 >>> [ 2.1787e-01 2.8712e-01 1.2293e-01 -1.8667e-04 7.7333e-04]

10 >>> [3 4 2 0 1]

Support-vector machines were applied to seismic data analysis (Li et al., 2004) and
the automatic seismic interpretation (Liu et al., 2015; Di et al., 2017b; Mardan et al.,
2017). Compared to convolutional neural networks, these approaches usually do not per-
form as well, when the CNN can gain information from adjacent samples. Seismological
volcanic tremor classification (Masotti et al., 2006; Masotti et al., 2008) and analysis of
ground-penetrating radar (Pasolli et al., 2009; Xie et al., 2013) were other notable ap-
plications of SVM in Geoscience. The 2016 Society of Exploration Geophysicists (SEG)
machine learning challenge was held using a SVM baseline (Hall, 2016). Several other
authors investigated well log analysis (Anifowose et al., 2017; Caté et al., 2018; Gupta
et al., 2018; Saporetti et al., 2018), as well as seismology for event classification (Mal-
fante et al., 2018) and magnitude determination (Ochoa et al., 2018). These rely on
SVMs being capable of regression on time-series data. Generally, many applications
in geoscience have been enabled by the strong mathematical foundation of SVMs, such
as microseismic event classification (Zhao et al., 2017b), seismic well ties (Chaki et al.,
2018), landslide susceptibility (Marjanović et al., 2011; Ballabio et al., 2012), digital
rock models (Ma et al., 2012), and lithology mapping (Cracknell et al., 2013).

2.2.2.3 Random Forests
The following example shows the application of Random Forests, to illustrate the sim-
ilarity of the API for different machine learning algorithms in the scikit-learn library.
The Random Forest classifier is instantiated with a maximum depth of seven, and the
random state is fixed to zero again. Limiting the depth of the forest forces the random
forest to conform to a simpler model. Random forests have the capability to become
highly complex models that are very powerful predictive models. This is not conducive
to this small example dataset, but easy to modify for the inclined reader. The classifier
is then trained using the same API of all classifiers in scikit-learn. The example shows
a very high number of hyperparameters, however, Random Forests work well without
further optimization of these.

1 # Define and train a Random Forest Classifier
2 from sklearn.ensemble import RandomForestClassifier
3 rf = RandomForestClassifier(max_depth=7, random_state=0)
4 rf.fit(X_train, y_train)
5

6 >>> RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
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7 class_weight=None, criterion='gini', max_depth=7,
8 max_features='auto', max_leaf_nodes=None,
9 max_samples=None, min_impurity_decrease=0.0,

10 min_impurity_split=None, min_samples_leaf=1,
11 min_samples_split=2, min_weight_fraction_leaf=0.0,
12 n_estimators=100, n_jobs=None, oob_score=False,
13 random_state=0, verbose=0, warm_start=False)

The prediction of the random forest is performed in the same API call again, also con-
sistent with all classifiers available. The values are slightly different from the prediction
of the SVM.

1 # Predict on new data with trained Random Forest
2 print(rf.predict([[0, 0, 0, 0, 0],
3 [-1, -1, -1, -1, -1],
4 [1, 1, 1, 1, 1]]))
5 >>> [1 0 1]

The training score of the random forest model is 2.5 % better than the SVM in this
instance, this score however not informative. Comparing the test scores shows only a
0.88 % difference, which is the relevant value to evaluate, as it shows the performance of
a model on data it has not seen during the training stage. The random forest performed
slightly better on the training set than the test data set. This slight discrepancy is
usually not an indicator of an overfit model. Overfit models ”memorize” the training
data and do not generalize well, which results in poor performance on unseen data.
Generally, overfitting is to be avoided in real application, but can be seen in competitions,
on benchmarks, and show-cases of new algorithms and architectures to oversell the
improvement over state-of-the-art methods (Recht et al., 2019).

1 # Score Random Forest on train and test data
2 print(rf.score(X_train, y_train))
3 print(rf.score(X_test, y_test))
4 >>> 0.9306
5 >>> 0.912

Random forests have specialized methods available for introspection, which can be used
to calculate feature importance. These are based on the decision process the random
forest used to build the machine learning model. The feature importance in Random
Forests uses the same method as permutation importance, which is dropping out features
to estimate their importance on the model performance. Random Forests use a measure
to determine the split between classes at each node of the trees called Gini impurity.
While the permutation importance uses the accuracy score of the prediction, in Random
Forests this Gini impurity can be used to measure how informative a feature is in a model.
It is important to note that this impurity-based process can be susceptible to noise and
overestimate high number of classes in features. Using the permutation importance
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instead is a valid choice. In this instance as opposed to the permutation importance,
the random forest estimates the two non-informative features to be one magnitude less
useful than the informative features, instead of two magnitudes.

1 # Inspect random forest for feature importance
2 print(rf.feature_importances_)
3 print(rf.feature_importances_.argsort())
4 >>> [0.2324 0.4877 0.2527 0.0141 0.0129]
5 >>> [4 3 0 2 1]

Random forests and other tree-based methods, including gradient boosting, a spe-
cialized version of random forests, have generally found wider application with the im-
plementation into scikit-learn and packages for the statistical languages R and SPSS.
Similar to neural networks, this method is applied to ASI (Guillen et al., 2015) with
limited success, which is due to the independent treatment of samples, like SVMs. Ran-
dom forests have the ability to approximate regression problems and time series, which
made them suitable for seismological applications including localization (Dodge et al.,
2016), event classification in volcanic tremors (Maggi et al., 2017) and slow slip analysis
(Hulbert et al., 2018). They have also been applied to geomechanical applications in
fracture modelling (Valera et al., 2017) and fault failure prediction (Rouet-Leduc et al.,
2017; Rouet-Leduc et al., 2018), as well as, detection of reservoir property changes from
4D seismic data (Cao et al., 2017). Gradient Boosted Trees were the winning models in
the 2016 SEG machine learning challenge (Hall et al., 2017) for well-log analysis, pro-
pelling a variety of publications in facies prediction (Bestagini et al., 2017; Blouin et al.,
2017; Caté et al., 2018; Saporetti et al., 2018).

Figure 2.8: Binary Decision Boundary for Random Forest in 2D. This is the same central
slice of the 3D decision volume used in Figure 2.6.
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Furthermore, various methods that have been introduced into scikit-learn have been
applied to a multitude of geoscience problems. Hidden Markov models were used on
seismological event classification (Ohrnberger, 2001; Beyreuther et al., 2008; Bicego et
al., 2013), well-log classification (Jeong et al., 2014; Wang et al., 2017a), and landslide
detection from seismic monitoring (Dammeier et al., 2016). These hidden Markov models
are highly performant on time series and spatially coherent problems. The ”hidden”
part of Markov models enables the model to assume influences on the predictions that
are not directly represented in the input data. The K-nearest neighbours method has
been used for well-log analysis (Caté et al., 2017; Saporetti et al., 2018), seismic well
ties (Wang et al., 2017b) combined with dynamic time warping and fault extraction in
seismic interpretation (Hale, 2013a), which is highly dependent on choosing the right
hyperparameter k. The unsupervised k-NN equivalent, k-means has been applied to
seismic interpretation (Di et al., 2017a), ground motion model validation (Khoshnevis et
al., 2018), and seismic velocity picking (Wei et al., 2018). These are very simple machine
learning models that are useful for baseline models. Graphical modelling in the form of
Bayesian networks has been applied to seismology in modelling earthquake parameters
(Kuehn et al., 2011), basin modelling (Martinelli et al., 2013), seismic interpretation
(Ferreira et al., 2018) and flow modelling in discrete fracture networks (Karra et al., 2018).
These graphical models are effective in causal modelling and gained popularity in modern
applications of machine learning explainability, interpretability, and generalization in
combination with do-calculus (Pearl, 2012).

2.2.2.4 Modern Deep Learning
The 2010s marked a renaissance of deep learning and particularly convolutional neural
networks. The convolutional neural network (CNN) architecture AlexNet (Krizhevsky
et al., 2012b) was the first CNN to enter the ImageNet challenge (Deng et al., 2009b).
The ImageNet challenge is considered a benchmark competition and database of natural
images established in the field of computer vision. This improved the classification error
rate from 25.8 % to 16.4 % (top-5 accuracy). This has propelled research in CNNs,
resulting in error rates on ImageNet of 2.25 % on top-5 accuracy in 2017 (Russakovsky
et al., 2015). The Tensorflow library (Martı́n Abadi et al., 2015) was introduced for
open source deep learning models, with some different software design compared to the
Theano and Torch libraries.

The following example shows an application of deep learning to the data presented
in the previous examples. The classification data set we use has independent samples,
which leads to the use of simple densely connected feed-forward networks. Image data
or spatially correlated datasets would ideally be fed to a convolutional neural network
(CNN), whereas time series are often best approached with recurrent neural networks
(RNN). This example is written using the Tensorflow library. PyTorch would be an
equally good library to use.

All modern deep learning libraries take a modular approach to building deep neural
networks that abstract operations into layers. These layers can be combined into input
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and output configurations in highly versatile and customizable ways. The simplest
architecture, which is the one we implement below, is a sequential model, which consists
of one input and one output layer, with a ”stack” of layers. It is possible to define more
complex models with multiple inputs and outputs, as well as the branching of layers to
build very sophisticated neural network pipelines. These models are called functional
API and subclassing API, but would not be conducive to this example.

The example model consists of Dense layers and a Dropout layer, which are arranged
in sequence. Densely connected layers contain a specified number of neurons with an
appropriate activation function, shown in the example below. Each neuron performs
the calculation outlined in equation 2.4, with σ defining the activation. Modern neural
networks rarely implement sigmoid and tanh activations anymore. Their activation
characteristic leads them to lose information for large positive and negative values of
the input, commonly called saturation(Hochreiter et al., 2001). This saturation of neu-
rons prevented good deep neural network performance until new non-linear activation
functions took their place(Xu et al., 2015). The activation function Rectified linear unit
(ReLU) is generally credited with facilitating the development of very deep neural net-
works, due to their non-saturating properties (Hahnloser et al., 2000). It sets all negative
values to zero and provides a linear response for positive values, as seen in equation 2.10.
Since it’s inception, many more rectifiers with different properties have been introduced.

σ(a) = max(0, a) (2.10)

Figure 2.9: ReLU activation (red) and derivative (blue) for efficient gradient computa-
tion.

The other activation function used in the example is the ”softmax” function on the
output layer. This activation is commonly used for classification tasks, as it normalizes
all activations at all outputs to one. It achieves this by applying the exponential func-
tion to each of the outputs in a⃗ for class C and dividing that value by the sum of all
exponentials:



28 2 Methods & Theory

σ(⃗a) = eaj

C∑
p
eap

(2.11)

The example additionally uses a Dropout layer, which is a common layer used for
regularization of the network by randomly setting a specified percentage of nodes to zero
for each iteration. Neural networks are particularly prone to overfitting, which is coun-
teracted by various regularization techniques that also include input-data augmentation,
noise injection, L1 and L2 constraints, or early-stopping of the training loop (Goodfellow
et al., 2016). Modern deep learning systems may even leverage noisy student-teacher
networks for regularization (Xie et al., 2019b).

1 import tensorflow as tf
2 model = tf.keras.models.Sequential([
3 tf.keras.layers.Dense(32, activation='relu'),
4 tf.keras.layers.Dropout(.3),
5 tf.keras.layers.Dense(16, activation='relu'),
6 tf.keras.layers.Dense(2, activation='softmax')])

These sequential models are also used for simple image classification models using
CNNs. Instead of Dense layers, these are built up with convolutional layers, which are
readily available in 1D, 2D, and 3D as Conv1D, Conv2D and Conv3D respectively. A
two-dimensional CNN learns a so-called filter f for the n × m-dimensional image G,
expressed as:

G∗(x, y) =
n∑
i=1

m∑
j=1

f(i, j) ·G(x− i+ c, y − j + c), (2.12)

resulting in the central result G∗ around the central coordinate c. In CNNs each layer
learns several of these filters f , usually following by a down-sampling operation in n
and m to compress the spatial information. This serves as a forcing function to learn
increasingly abstract representations in subsequent convolutional layers.

This sequential example model of densely connected layers with a single input, 32, 16,
and two neurons contains a total of 754 trainable weights. Initially, each of these weights
is set to a pseudo-random value, which is often drawn from a distribution beneficial to
fast training. Consequently, the data is passed through the network, and the result
is numerically compared to the expected values. This form of training is defined as
supervised training and error-correcting learning, which is a form of Hebbian learning.
Other forms of learning exist and are employed in machine learning, e.g. competitive
learning in self-organizing maps.

MAE = |yj − oj| (2.13)
MSE = (yj − oj)2 (2.14)

In regression problems the error is often calculated using the Mean Absolute Error
(MAE) or Mean Squared Error (MSE), the L1 shown in equation 2.13 and the L2 norm
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Figure 2.10: Three layer convolutional network. The input image (yellow) is convolved
with several filters or kernel matrices (purple). Commonly, the convolution is used to
downsample an image in the spatial dimension, while expanding the dimension of the
filter response, hence expanding in ”thickness” in the schematic. The filters are learned
in the machine learning optimization loop. The shared weights within a filter improve
efficiency of the network over classic dense networks.

shown in equation 2.14 respectively. Classification problems form a special type of
problem that can leverage a different kind of loss called cross-entropy (CE). The cross-
entropy is dependent on the true label y and the prediction in the output layer.

CE = −
C∑
j

yj log (oj) (2.15)

Many machine learning data sets have one true label ytrue = 1 for class Cj=true,
leaving all other yj = 0. This makes the sum over all labels obsolete. It is debatable
how much binary labels reflects reality, but it simplifies equation 2.15 to minimizing
the (negative) logarithm of the neural network output oj, also known as negative log-
likelihood:

CE = − log (oj) (2.16)

Technically, the data we generated is a binary classification problem, and this means
we could use the sigmoid activation function in the last layer and optimize a binary CE.
This can speed up computation, but in this example, an approach is shown that works
for many other problems and can therefore be applied to the readers data.

1 model.compile(optimizer='adam', # Often 'adam' or 'sgd' are good
2 loss='sparse_categorical_crossentropy',
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3 metrics=['accuracy']) # Monitor other metrics

Large neural networks can be extremely costly to train with significant develop-
ments in 2019/2020 reporting multi-billion parameter language models (Google, Ope-
nAI) trained on massive hardware infrastructure for weeks with a single epoch taking
several hours. This calls for validation on unseen data after every epoch of the train-
ing run. Therefore, neural networks, like all machine learning models, are commonly
trained with two hold-out sets, a validation and a final test set. The validation set can
be provided or be defined as a percentage of the training data, as shown below. In the
example, 10% of the training data are held out for validation after every epoch, reducing
the training data set from 3750 to 3375 individual samples.

1 model.fit(X_train,
2 y_train,
3 validation_split=.1,
4 epochs=100)
5 >>> [...]
6 Epoch 100/100
7 3375/3375 [==============================] - 0s 66us/sample
8 loss: 0.1567 - accuracy: 0.9401 -
9 val_loss: 0.1731 - val_accuracy: 0.9359

Neural networks are trained with variations of stochastic gradient descent (SGD),
an incremental version of the classic steepest descent algorithm. We use the Adam
optimizer, a variation of SGD that converges fast, but a full explanation would go
beyond the scope of this chapter. The gist of the Adam optimizer is that it maintains a
per-parameter learning rate of the first statistical moment (mean). This is beneficial for
sparse problems and the second moment (uncentered variance), which is beneficial for
noisy and non-stationary problems (Kingma et al., 2014). The main alternative to Adam
is SGD with Nesterov momentum (Sutskever et al., 2013), an optimization method that
models conjugate gradient methods (CG) without the heavy computation that comes
with the search in CG. SGD anecdotally finds a better optimal point for neural networks
than Adam but converges much slower.

In addition to the loss value, we display the accuracy metric. While accuracy should
not be the sole arbiter of model performance, it gives a reasonable initial estimate, how
many samples are predicted correctly with a percentage between zero and one. As
opposed to scikit-learn, deep learning models are compiled after their definition to make
them fit for optimization on the available hardware. Then the neural network can be fit
like the SVM and Random Forest models before, using the X_train and y_train data.
In addition, a number of epochs can be provided to run, as well as other parameters
that are left on default for the example. The amount of epochs defines how many cycles
of optimization on the full training data set are performed. Conventional wisdom for
neural network training is that it should always learn for more epochs than machine
learning researchers estimate initially.
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Figure 2.11: Loss and Accuracy of example neural network on ten random initializations.
Training for 100 epochs with the shaded area showing the 95% confidence intervals of
the loss and metric. Analyzing loss curves is important to evaluate overfitting. The
trining loss decreasing, while validation loss is close to plateauing is a sign of overfitting.
Generally, it can be seen that the model converged and is only making marginal gains
with the risk of overfitting.

It can be difficult to fix all sources of randomness and stochasticity in neural networks,
to make both research and examples reproducible. This example does not fix these so-
called random seeds as it would detract from the example. That implies that the results
for loss and accuracy will differ from the printed examples. In research fixing the seed
is very important to ensure reproducibility of claims. Moreover, to avoid bad practices
or so-called ”lucky seeds”, a statistical analysis of multiple fixed seeds is good practice
to report results in any machine learning model.

1 model.evaluate(X_test, y_test)
2 >>> 1250/1250 [==============================] - 0s 93us/sample
3 loss: 0.1998 - accuracy: 0.9360
4 [0.19976349686831235, 0.936]

In the example before, the SVM and Random Forest classifier were scored on unseen
data. This is equally important for neural networks. Neural networks are prone to
overfit, which we try to circumvent by regularizing the weights and by evaluating the
final network on an unseen test set. The prediction on the test set is very close to
the last epoch in the training loop, which is a good indicator that this neural network
generalizes to unseen data. Moreover, the loss curves in figure 2.11 do not converge
too fast, while converging. However, it appears that the network would overfit if we let
training continue. The exemplary decision boundary in figure 2.12 very closely models
the local distribution of the data, which is true for the entire decision volume (Dramsch,
2020a).
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Figure 2.12: Central 2D slice of decision Boundary of deep neural network in trained on
data with 3 informative features. The 3D volume is available in (Dramsch, 2020a).

These examples illustrate the open source revolution in machine learning software.
The consolidated API and utility functions make it seem trivial to apply various machine
learning algorithms to scientific data. This can be seen in the recent explosion of pub-
lications of applied machine learning in geoscience. The need to be able to implement
algorithms has been replaced by merely installing a package and calling model.fit(X,
y). These developments call for strong validation requirements of models to ensure valid,
reproducible, and scientific results. Without this careful validation these modern day
tools can be severely misused to oversell results and even come to incorrect conclusions.

In aggregate, modern-day neural networks benefit from the development of non-
saturating non-linear activation functions. The advancements of stochastic gradient
descent with Nesterov momentum and the Adam optimizer (following AdaGrad and
RMSProp) was essential faster training of deep neural networks. The leverage of graphics
hardware available in most high-end desktop computers that is specialized for linear
algebra computation, further reduced training times. Finally, open-source software that
is well-maintained, tested, and documented with a consistent API made both shallow
and deep machine learning accessible to non-experts.

2.2.2.5 Neural Network Architectures
In deep learning, implementation of models is commonly more complicated than under-
standing the underlying algorithm. Modern deep learning makes use of various recent
developments that can be beneficial to the data set it is applied to, without specific im-
plementation details results are often not reproducible. However, the machine learning
community has a firm grounding in openness and sharing, which is seen in both publica-
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tions and code. New developments are commonly published alongside their open-source
code, and frequently with the trained networks on standard benchmark data sets. This
facilitates thorough inspection and transferring the new insights to applied tasks such
as geoscience. In the following, some relevant neural network architectures and their
application are explored.

2.2.2.6 Convolutional Neural Network Architectures
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Figure 2.13: Schematic of a VGG16 network for ImageNet. The input data is convolved
and down-sampled repeatedly. The final image classification is performed by flattening
the image and feeding it to a classic feed-forward densely connected neural network. The
1000 output nodes for the 1000 ImageNet classes are normalized by a final softmax layer
(cf. equation 2.11). Visualization library (Iqbal, 2018)

The first model to discuss is the VGG-16 model, a 16-layer deep convolutional neu-
ral network (Simonyan et al., 2014a) represented in figure 2.13. This network was an
attempt at building even deeper networks and uses small 3 × 3 convolutional filters
in the network, called f in equation 2.12. This small filter-size was sufficient to build
powerful models that abstract the information from layer to deeper layer, which is easy
to visualize and generalize well. The trained model on natural images also transfers
well to other domains like seismic interpretation (Dramsch et al., 2018d). Later, the
concept of Network-in-Network was introduced, which suggested defined sub-networks
or blocks in the larger network structure (Lin et al., 2013). The ResNet architecture
uses this concept of blocks to define residual blocks. These use a shortcut around a
convolutional block (He et al., 2016) to achieve neural networks with up to 152 layers
that still generalize well. ResNets and residual blocks, in particular, are very popular in
modern architectures including the shortcuts or skip connections they popularized, to
address the following problem:

When deeper networks start converging, a degradation problem has been
exposed: with the network depth increasing, accuracy gets saturated (which
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might be unsurprising) and then degrades rapidly. Unexpectedly, such degra-
dation is not caused by overfitting, and adding more layers to a suitably deep
model leads to higher training error.

He et al. (2016)

1 × 1
ReLU

3 × 3
ReLU

1 × 1
ReLU

Σ

ReLU

Figure 2.14: Schematic of a ResNet block. The block contains a 1 × 1, 3 × 3, and
1×1 convolution with ReLU activation. The output is concatenated with the input and
passed through another ReLU activation function.

The developments and successes in image classification on benchmark competitions
like ImageNet and Pascal-VOC inspired applications in automatic seismic interpretation.
These networks are usually single image classifiers using convolutional neural networks
(CNNs). The first application of a convolutional neural network to seismic data used
a relatively small deep CNN for salt identification (Waldeland et al., 2017). The open
source software ”MaLenoV” implemented a single image classification network, which
was the earliest freely available implementation of deep learning for seismic interpretation
(Ildstad et al., 2017). Dramsch et al. (2018d) applied pre-trained VGG-16 and ResNet50
single image seismic interpretation. Recent succesful applications build upon pre-trained
pre-built architectures to implement into more sophisticated deep learning systems, e.g.
semantic segmentation. Semantic segmentation is important in seismic interpretation.
This is already a narrow field of application of machine learning and it can be observed
that many early applications focus on sub-subsections of seismic interpretation utilizing
these pre-built architectures such as salt detection (Waldeland et al., 2018; Di et al.,
2018; Gramstad et al., 2018), fault interpretation (Araya-Polo et al., 2017; Guitton,
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2018; Purves et al., 2018), facies classification (Chevitarese et al., 2018; Dramsch et al.,
2018d), and horizon picking (Wu et al., 2018). In comparison, this is however, already
a broader application than prior machine learning approaches for seismic interpretation
that utilized very specific seismic attributes as input to self-organizing maps (SOM) for
e.g. sweet spot identification (Guo et al., 2017; Zhao et al., 2017a; Roden et al., 2017).

In geoscience single image classification, as presented in the ImageNet challenge,
is less relevant than other applications like image segmentation and time series clas-
sification. The developments and insights resulting from the ImageNet challenge were,
however, transferred to network architectures that have relevance in machine learning for
science. Fully convolutional networks are a way to better achieve image segmentation. A
particularly useful implementation, the U-net, was first introduced in biomedical image
segmentation, a discipline notorious for small datasets (Ronneberger et al., 2015a). The
U-net architecture shown in Figure 2.15 utilizes several shortcuts in an encoder-decoder
architecture to achieve stable segmentation results. Shortcuts (or skip connections) are
a way in neural networks to combine the original information and the processed in-
formation, usually through concatenation or addition. In ResNet blocks this concept
is extended to an extreme, where every block in the architecture contains a shortcut
between the input and output, as seen in Figure 2.14. These blocks are universally
used in many architectures to implement deeper networks, i.e. ResNet-152 with 60 mil-
lion parameters, with fewer parameters than previous architectures like VGG-16 with
138 million parameters. Essentially, enabling models that are ten times as deep with
less than half the parameters, and significantly better accuracy on image benchmark
problems.

Bottleneck

Figure 2.15: Schematic of Unet architecture. Convolutional layers are followed by a
downsampling operation in the encoder. The central bottleneck contains a compressed
representation of the input data. The decoder contains upsampling operations followed
by convolutions. The last layer is commonly a softmax layer to provide classes. Equally
sized layers are connected via shortcut connections.

In 2018 the seismic contractor TGS made a seismic interpretation challenge avail-
able on the data science competition platform Kaggle. Successful participants in the
competition combined ResNet architectures with the Unet architecture as their base
architecture and modified these with state-of-the-art image segmentation applications
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(Babakhin et al., 2019a). Moreover, Dramsch et al. (2018d) showed that transferring
networks trained on large bodies of natural images to seismic data yields good results
on small datasets, which was further confirmed in this competition. The learnings from
the TGS Salt Identification challenge have been incorporated in production scale models
that perform human-like salt interpretation (Sen et al., 2020). In broader geoscience,
U-nets have been used to model global water storage using GRAVE satellite data (Sun et
al., 2019), landslide prediction (Hajimoradlou et al., 2019), and earthquake arrival time
picking (Zhu et al., 2018). A more classical approach identifies subsea scale worms in
hydrothermal vents (Shashidhara et al., 2020), whereas Dramsch et al. (2019b) includes
a U-net in a larger system for unsupervised 3D timeshift extraction from 4D seismic.

This modularity of neural networks can be seen all throughout the research and
application of deep learning. New insights can be incorporated into existing architectures
to enhance their predictive power. This can be in the form of swapping out the activation
function σ or including new layers for improvements e.g. regularization with batch
normalization (Ioffe et al., 2015). The U-net architecture originally is relatively shallow,
but was modified to contain a modified ResNet for the Kaggle salt identification challenge
instead (Babakhin et al., 2019a). Overall, serving as examples for the flexibility of neural
networks.

2.2.2.7 Generative Adversarial Networks
Generative adversarial networks (GAN) take composition of neural network to another
level, where two networks are trained in aggregate to get a desired result. In GANs,
a generator network G and a discriminator network D work against each other in the
training loop (Goodfellow et al., 2014b). The generator G is set up to generate samples
from an input, these were often natural images in early GANs, but has now progressed to
anything from time series (Engel et al., 2019) to high-energy physics simulation (Paganini
et al., 2018). The discriminator network D attempts to distinguish whether the sample
is generated from G i.e. fake or a real image from the training data. Mathematically,
this defines a min max game for the value function V of G and D

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.17)

with x representing the data, z is the latent spaceG draws samples from, and p represents
the respective probability distributions. Eventually reaching a Nash equlibrium (Nash,
1951), where neither the generator network G can produce better outputs, nor the
discriminator network D can improve its capability to discern between fake and real
samples.

Despite how versatile U-nets are, they still need an appropriate defined loss function
and labels to build a discriminative model. GANs however, build a generative model
that approximates the training sample distribution in the Generator and a discriminative
model of the Discriminator modeled dynamically through adversarial training. The
Discriminator effectively providing an adversarial loss in a GAN. In addition to providing
two models that serve different purposes, learning the training sample distribution with
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an adversarial loss makes GANs one of the most versatile models currently discovered.
Mosser et al. (2017) were applied GANs early on to geoscience, modeling 3D porous
media at the pore scale with a deep convolutional GAN. The authors extended this
approach to conditional simulations of oolithic digital rock (Mosser et al., 2018a). Early
applications of GANs also included approximating the problem of velocity inversion of
seismic data (Mosser et al., 2018c) and generating seismograms (Krischer et al., 2017).
Richardson (2018) integrate the Generator of the GAN into full waveform inversion of
the scalar wavefield. Alternatively, a Bayesian inversion using the Generator as prior for
velocity inversion was introduced in Mosser et al. (2018b). In geomodeling, generation
of geological channel models was presented (Chan et al., 2017), which was subsequently
extended with the capability to be conditioned on physical measurements (Dupont et
al., 2018). Naturally, GANs were applied to the growing field of automatic seismic
interpretation (Lu et al., 2018).

2.2.2.8 Recurrent Neural Network Architectures
The final type of architecture applied in geoscience is recurrent neural networks (RNN).
In contrast to all previous architectures, recurrent neural networks feed back into them-
selves. There are many types of RNNs, Hopfield networks being one that were applied
to seismic source wavelet prediction (Wang et al., 1992) early on. However, LSTMs
(Hochreiter et al., 1997) are the main application in geoscience and wider machine learn-
ing. This type of network achieves state-of-the-art performance on sequential data like
language tasks and time series applications. LSTMs solve some common problems of
RNNs by implementing specific gates that regulate information flow in an LSTM cell,
namely, input gate, forget gate, and output gate, visualized in Figure 2.16. The input
gate feeds input values to the internal cell. The forget gate overwrites the previous
state. Finally, the output gate regulates the direct contribution of the input value to
the output value combined with the internal state of the cell. Additionally, a peephole
functionality helps with the training that serves as a shortcut between inputs and gates.

A classic application of LSTMs is text analysis and natural language understanding,
which has been applied to geological relation extraction from unstructured text docu-
ments (Luo et al., 2017; Blondelle et al., 2017). Due to the nature of LSTMs being
suited for time series data, it is has been applied to seismological event classification of
volcanic activity Titos et al., 2018, multi-factor landslide displacement prediction (Xie
et al., 2019a), and hydrological modelling (Kratzert et al., 2019). Talarico et al. (2019)
applied LSTM to model sedimentological sequences and compared the model to base-
line Hidden Markov Model (HMM), concluding that RNNs outperform HMMs based
on first-order Markov chains, while higher order Markov chains were too complex to
calibrate satisfactorily. Gated Recurrent Unit (GRU) (Cho et al., 2014) is another RNN
developed based on the insights into LSTM, which was applied to predict petrophysical
properties from seismic data (Alfarraj et al., 2019).

The scope of this review only allowed for a broad overview of types of networks, that
were successfully applied to geoscience. Many more specific architectures exist and are
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Figure 2.16: Schematic of LSTM architecture. The input data is processed together
with the hidden state and cell state. The LSTM avoid the exploding gradient problem
by implemented a input, forget, and output gate.
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in development that provide different advantages. Siamese networks for one-shot image
analysis (Koch et al., 2015), transformer networks that largely replaced LSTM and GRU
in language modelling (Vaswani et al., 2017), or attention as a general mechanism in
deep neural networks (Zheng et al., 2017).

Neural network architectures have been modified and applied to diverse problems in
geoscience. Every architecture type is particularly suited to certain data types that are
present in each field of geoscience. However, fields with data present in machine-readable
format experienced accelerated adoption of machine learning tools and applications. For
example, Ross et al. (2018a) were able to successfully apply CNNs to seismological phase
detection, relying on an extensive catalogue of hand-picked data (Ross et al., 2018a) and
consequently generalize this work (Ross et al., 2018b). It has to be noted that synthetic
or specifically sampled data can introduce an implicit bias into the network (Wirgin,
2004; Kim et al., 2019). Nevertheless, particularly this blackbox property of machine
learning model makes them versatile and powerful tools that were leveraged in every
subdiscipline of the Earth sciences.

2.2.2.9 The State of ML on Geoscience
Overall, geoscience and especially geophysics has followed developments in machine learn-
ing closely. Across disciplines, machine learning methods have been applied to various
problems that can generally be categorized into three subsections:

1. Build a surrogate ML model of a well-understood process. This model usually
provides an advantage in computational cost.

2. Build an ML model of a task previously only possible with human interaction,
interpretation, or knowledge and experience.

3. Build a novel ML model that performs a task that was previously not possible.

Granulometry on SEM images is an example of an application in category I, where
previously sediments were hand-measured in images (Dramsch et al., 2018a). Applying
large deformation diffeomorphic mapping of seismic data was computationally infeasible
for matching 4D seismic data, however, made feasible by applying a U-net architecture
to the problem of category II (Dramsch et al., 2019b). The problem of earthquake
magnitude prediction falls into category III due to the complexity of the system but was
nevertheless approached with neural networks (Panakkat et al., 2007).

The accessibility of tools, knowledge, and compute make this cycle of machine learn-
ing enthusiasm unique, with regard to previous decades. This unprecedented access
to tools makes the application of machine learning algorithms to any problem possible,
where data is available. The bibliometrics of machine learning in geoscience, shown in
figure 2.17 serve as a proxy for increased access. These papers include varying degrees of
depth in application and model validation. One of the primary influences for the current
increase in publications are new fields such as automatic seismic interpretation, as well
as, publications soliciting and encouraging machine learning publications. Computer
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vision models were relatively straight forward to transfer to seismic interpretation tasks,
with papers in this sub-sub-field ranging from single 2D line salt identification models
with limited validation to 3D multi-facies interpretation with validation on a separate
geographic area.

Geoscientific publishing can be challenging to navigate with respect to machine learn-
ing. While papers investigating the theoretical fundamentals of machine learning in geo-
science exist, it is clear that the overwhelming majority of papers present applications of
ML to geoscientific problems. It is complex to evaluate whether a paper is a case study or
a methodological paper with an exemplary application to a specific data set. Despite the
difficulty of most thorough applications of ML, ”idea papers” exist that simply present
an established algorithm to a problem in geoscience without a specific implementation
or addressing the possible caveats. On the flip-side, some papers apply machine learning
algorithms as pure regression models without the aim to generalize the model to other
data. Unfortunately, this makes meta-analysis articles difficult to impossible. This kind
of meta-analysis article, is commonly done in medicine and considered a gold-standard
study, and would greatly benefit the geoscientific community to determine the efficacy
of algorithms on sets of similar problems.

Figure 2.17: Bibliometry of 242 papers in Machine Learning for Geoscience per year.
Search terms include variations of machine learning terms and geoscientific subdisciplines
but exclude remote sensing and kriging.

Analogous to the medical field, obtaining accurate ground truth data, is often im-
possible and usually expensive. Geological ground truth data for seismic data is usually
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obtained through expert interpreters. Quantifying the uncertainty of these interpreta-
tions is an active field of research, which suggest a broader set of experiences and a
diverse set of sources of information for interpretation facilitate correct geological in-
terpretation between interpreters (Bond et al., 2007). Radiologists tasked to interpret
x-ray images showed similar decreases in both inter- and intra-interpreter error rate with
more diverse data sources Jewett et al., 1992. These uncertainties in the training labels
are commonly known as ”label noise” and can be a detriment to building accurate and
generalizable machine learning models. A significant portion of data in geoscience, how-
ever, is not machine learning ready. Actual ground truth data from drilling reports is
often locked away in running text reports, sometimes in scanned PDFs. Data is often
siloed and most likely proprietary. Sometimes the amount of samples to process is so
large that many insights are yet to be made from samples in core stores or the storage
rooms of museums. Benchmark models are either non-existent or made by consortia
that only provide access to their members. Academic data is usually only available
within academic groups for competitive advantage, respect for the amount of work, and
fear of being exposed to legal and public repercussions. These problems are currently
addressed by a culture change. Nevertheless, liberating data will be a significant in-
vestment, regardless of who will work on it and a slow culture change can be observed
already.

Generally, machine learning has seen the fastest successes in domains where decisions
are cheap (e.g. click advertising), data is readily available (e.g. online shops), and the
environment is simple (e.g. games) or unconstrained (e.g. image generation). Geoscience
generally is at the opposite of this spectrum. Decisions are expensive, be it drilling new
wells or assessing geohazards. Data is expensive, sparse, and noisy. The environment is
heterogeneous and constrained by physical limitations. Therefore, solving problems like
automatic seismic interpretation see a surge of activity having fewer constraints initially.
Problems like inversion have solutions that are verifiably wrong due to physics. These
constraints do not prohibit machine learning applications in geoscience. However, most
successes are seen in close collaboration with subject matter experts. Moreover, model
explainability becomes essential in the geoscience domain. While not being a strict
equivalency, simpler models are usually easier to interpret, especially regarding failure
modes.

A prominent example of ”excessive” (Mignan et al., 2019a) model complexity was
presented in DeVries et al. (2018) applying deep learning to aftershock prediction. Inde-
pendent data scientists identified methodological errors, including data leakage from the
train set to the test set used to present results (Shah et al., 2019). Moreover, Mignan
et al. (2019b) showed that using the central physical interpretation of the deep learning
model, using the von Mises yield criterion, could be used to build a surrogate logistic
regression. The resulting surrogate or baseline model outperforms the deep network and
overfits less. Moreover, replacing the ~13,000 parameter model with the two-parameter
baseline model increases calculation speed, which is essential in aftershock forecasting
and disaster response3. More generally, this is an example where data science practices

3All authors point out the potential in deep and machine learning research in geoscience regardless
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such as model validation, baseline models, and preventing data leakage and overfitting
become increasingly important when the tools of applying machine learning become
readily available.

Despite potential setbacks and the field of deep learning and data science being
relatively young, they can rely on mathematical and statistical foundations and make
significant contributions to science and society. Machine learning systems have con-
tributed to modelling the protein structure of the current pandemic virus COVID-19
(Jumper et al., 2020). A deep learning computer vision system was built to stabilize
food safety by identifying Cassava plant disease on offline mobile devices (Ramcharan et
al., 2017; Ramcharan et al., 2019). Self-driving cars have become a possibility (Bojarski
et al., 2016) and natural language understanding has progressed significantly (Devlin
et al., 2018).

Geoscience is slower in the adoption of machine learning, compared to other disci-
plines. To be able to adapt the progress in machine learning research, many valuable
data sources have to be made machine-readable. There has already been a change in
making computer code open source, which has lead to collaborations and accelerating
scientific progress. While specific open benchmark data sets have been tantamount to
the progress in machine learning, it is questionable whether these would be beneficial to
machine learning in geoscience. The problems are often very complex with non-unique
explanations and solutions, which historically has lead to disagreements over geophysical
benchmark data sets. Open data and open-source software, however, have and will play
a significant role in advancing the field. Examples of this include basic utility function
to load geoscientific data (Kvalsvik et al., 2019) or more specifically cross-validation
functions tailored to geoscience (Uieda, 2018).

Moreover, machine learning is fundamentally conservative, training on available data.
This bias of data collection will influence the ability to generate new insights in all areas
of geoscience. Machine learning in geoscience may be able to generate insights and
establish relationships in existing data. Entirely new insights from previously unseen
or analysis of particularly complex models will still be a task performed by trained
geoscientists. Transfer learning is an active field of machine learning research, that
geoscience can significantly benefit from. However, no significant headway has been made
to transfer trained machine learning models to out-of-distribution data, i.e. data that
is conceptually similar but explicitly different from the training data set. The fields of
self-supervised learning, including reinforcement learning that can learn by exploration,
may be able to approach some of these problems. They are, however, notoriously hard
to set up and train, necessitating significant expertise in machine learning.

Large portions of publications are concerned with weakly or unconstrained predic-
tions such as seismic interpretation and other applications that perform image recog-
nition on SEM or core photography. These methods will continue to improve by im-
plementing algorithmic improvements from machine learning research, specialized data
augmentation strategies, and more diverse training data being available. New techniques
such as multi-task learning (Kendall et al., 2018) which improved computer vision and

and do not wish to stifle such research.(Shah et al., 2019; Mignan et al., 2019b)
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computer linguistic models, deep bayesian networks (Mosser et al., 2019) to obtain un-
certainties, noisy teacher-student networks (Xie et al., 2019b) to improve training, and
transformer networks (Graves, 2012) for time series processing, will significantly im-
prove applications in geoscience. For example, automated seismic interpretation may
advance to provide reliable outputs for relatively difficult geological regimes beyond ex-
isting solutions. Success will be reliant on interdisciplinary teams that can discern why
geologically specific faults are important to interpret, while others would be ignored in
manual interpretations, to encode geological understanding in automatic interpretation
systems.

Currently, the most successful applications of machine learning and deep learning,
tie into existing workflows to automate sub-tasks in a grander system. These models are
highly specific, and their predictive capability does not resemble an artificial intelligence
or attempt to do so. Mathematical constraints and existing theory in other applied fields,
especially neuroscience, were able to generate insights into deep learning and geoscience
has the opportunity to develop significant contributions to the area of machine learning,
considering their unique problem set of heterogeneity, varying scales and non-unique
solutions. This has already taken place with the wider adoption of ”kriging” or more
generally Gaussian processes into machine learning. Moreover, known applications of
signal theory and information theory employed in geophysics are equally applicable in
machine learning, with examples utilizing complex-valued neural networks (Trabelsi et
al., 2017), deep Kalman filters (Krishnan et al., 2015), and Fourier analysis (Tancik et
al., 2020). Therefore, possibly enabling additional insights, particularly when integrated
with deep learning, due to its modularity and versatility.

Previous reservations about neural networks included the difficulty of implementation
and susceptibility to noise in addition to computational costs. Research into updating
trained models and saving the optimizer state with the model has in part alleviated
the cost of re-training existing models. Moreover, fine-tuning pre-trained large complex
models to specific problems has proven successful in several domains. Regularization
techniques and noise modelling, as well as data cleaning pipelines, can be implemented
to lessen the impact of noise on machine learning models. Specific types of noise can
be attenuated or even used as an additional source of information. The aforementioned
concerns have mainly transitioned into a critique about overly complex models that
overfit the training data and are not interpretable. Modern software makes very so-
phisticated machine learning models, and data pipelines available to researchers, which
has, in turn, increased the importance to control for data leakage and perform thorough
model validation.

Currently, machine learning for science primarily relies on the emerging field of ex-
plainability (Lundberg et al., 2018). These provide primarily post-hoc explanations for
predictions from models. This field is particularly important to evaluate which inputs
from the data have the strongest influence on the prediction result. The major point
of critique regarding post-hoc explanations is that these methods attempt to explain
how the algorithm reached a wrong prediction with equal confidence. Bayesian neural
networks intend to address this issue by providing confidence intervals for the predic-
tion based on prior beliefs. These neural networks intend to incorporate prior expert
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knowledge into neural networks, which can be beneficial in geoscientific applications,
where strong priors can be necessary. Machine learning interpretability attempts to
impose constraints on the machine learning models to make the model itself explainable.
Closely related to these topics is the statistics field of causal inference. Causal inference
attempts to model the cause of variable, instead of correlative prediction. Some methods
exist that can perform causal machine learning, i.e. causal trees (Athey et al., 2016).
These three fields will be necessary to glean verifiable scientific insights from machine
learning in geoscience. They are active fields of research and more involved to correctly
apply, which often makes cooperation with a statistician necessary.

In conclusion, machine learning has had a long history in geoscience. Kriging has pro-
gressed into more general machine learning methods, and geoscience has made significant
progress applying deep learning. Applying deep convolutional networks to automatic
seismic interpretation has progressed these methods beyond what was possible, albeit
still being an active field of research. Using modern tools, composing custom neural
networks, and conventional machine learning pipelines has become increasingly trivial,
enabling wide-spread applications in every sub-field of geoscience. Nevertheless, it is
important to acknowledge the limitations of machine learning in geoscience. Machine
learning methods are often cutting-edge technology, yet properly validated models take
time to develop, which is often perceived as inconvenient when working in a hot sci-
entific field. Despite being cutting edge, it is important to acknowledge that none of
these applications are fully automated, as would be suggested by the lure of artificial
intelligence. Nevertheless, within applied geoscience, significant new insights have been
presented. Applications in geoscience are using machine learning as a utility for data
pre-processing, implementing previous insights beyond the theory and synthetic cases,
or the model itself enabling unprecedented applications in geoscience. Overall, applied
machine learning has matured into an established tool in computational geoscience and
has the potential to provide further insights into the theory of geoscience itself.

2.3 Contributions of this Study
This chapter provides the basic principles in 4D seismic and an overview of Machine
Learning in geoscience in the last 70 years. This lays the foundation for the applications
outlined in the following chapters that use Convolutional Neural Networks on seismic
data, as well as Deep Neural Networks on seismic maps. Specialized theory and methods
are introduced in their respective chapters. The work in this chapter resulted in a review
book chapter (Dramsch, 2020d) with the code available in (Dramsch, 2020e).



CHAPTER 3
Unsupervised Geological

Image Segmentation
Analysis of chalk samples can be done by Backscatter Scanning-Electron Microscopy.
The resulting images contain black-white images of the sample that can be measured
and analysed. The back-scatter measurements add information regarding the chemi-
cal composition from the back-scattered energy from the electron beam. Research into
the porosity and sedimentology of the chalk reservoirs conducted using electron micro-
scopes. Identifying the grain size and orientation of the oolites is usually a manual
work-intensive task, ideal for computer vision tasks, considering the good contrast of
light-grey to white oolites and the black background. Figure 3.1 shows a chalk sample
from the analysis. The chalk grains are of varying size, with inter- and intra-grain poros-
ity. The intra-grain porosity is best seen in the grain located at (1000, 200) in Figure 3.1.
Backscatter Scanning-Electron Microscopy (BSEM) data is noisy, which can distort the
image. Additionally, grain boundaries tend to be jagged, which is aggravated by the
noise.

Figure 3.1: Backscatter Scanning-Electron
Microscopy of chalk sample.

3.1 Unsupervised
Image Segmentation
Labelled training data was not available
to apply Convolutional Neural Networks
to this problem. Instead of hand-labelling
the data, unsupervised clustering was ap-
propriate to find the optimal boundary of
the grains from the background. Gaussian
mixture models (GMMs) learned a two-
fold representation that separated the
background well from the rock. Clustering
the pixel intensity into two clusters with
the GMM and classical histogram bound-
ary are displayed in Figure 3.2. These
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boundaries do not coincide, and while they are close, the two-pixel difference changes
the prediction significantly.

Figure 3.2: Greyscale values overlaid with negative log likelihood predicted by Gaussian
mixture model (red) with decision boundaries from GMM (green) and histogram decision
boundary (blue).

3.1.1 Gaussian Mixture Models
In detail, the Gaussian mixture model can model normally distributed sub-populations
that constitute a larger population. The Gaussian distributions are usually estimated
by using the maximum likelihood method. Because differentiating the log-likelihood is
computationally infeasible, commonly, the expectation maximisation (EM) is utilised to
approximate the maximum log-likelihood. EM is an iterative approach that calculates
the expectation of a sample to be part of a component and maximisation, which updates
the model parameters.

We define x = (x1, x2, ..., xn) as the data points with n independent observations.
Then z = (z1, z2, ..., zn) is the latent vector and Xi|(Zi = k) ∝ Nd(µ1,Σ1) for k com-
pononents and a d-dimensional Gaussian. Then the distribution

p(x) =
k∑
i=1

ϕiN (x|µi,Σi),
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where ϕi are the model weights and normalize to

K∑
i=1

ϕi = 1.

The Expectation step calculates the membership probabilities for all samples i and
components k:

γ̂ik = ϕ̂kN (xi|µ̂k, σ̂k)
K∑
j=1

ϕ̂jN (xi|µ̂j, σ̂j)
(3.1)

then the estimated γ̂ik describes the probability that a sample xi is generated by the
k-th component Ck, leading to the conditional probability γ̂ik = p(Ck|xi, ϕ̂, µ̂, σ̂).

The Maximization step then updates the parameter set (ϕ̂, µ̂, σ̂) for all k:

ϕ̂k =
N∑
i=1

γ̂ik
N

(3.2)

µ̂k =

N∑
i=1

γ̂ikxi

N∑
i=1

γ̂ik

(3.3)

σ̂2
k =

N∑
i=1

γ̂ik(xi − µ̂k)2

N∑
i=1γ̂ik

(3.4)

The parameters are initialized by a naive strategy, so that all samples in x get randomly
assigned to a component and the weights are uniformly distributed as ϕ1, ϕ2, ..., ϕK = 1

K
.

The iteration is stopped when the model converges, that is the expectation of subsequent
steps changes less then a pre-set ϵ.

3.1.2 Morphological Filtering
This single-valued intensity value causes the boundary to be non-smooth around the
grains. Therefore morphological filtering was applied to smooth out the boundaries
programmatically. Smooth boundaries are essential for chalk grains, as the perimeter of
the oolites can be used to calculate the specific surface of chalk. The optimal boundary
of chalk grains could then be used to generate training data for more sophisticated
machine learning systems.

Mathematical morphology is the theory of analysing geometrical structures. Morpho-
logical filtering implements multiple shape-based filters that perform non-linear trans-
formations. In this case, we apply morphological dilation and morphological erosion.
Morphological erosion set the central pixel to the minimum of a neighbourhood. More
formally A is a binary image and B is a structuring element on the Euclidean space E,
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e.g. a 3× 3 square, or a disk with defined radius, then A⊖B = {z ∈ E|Bz ⊆ A}, where
Bz is the translation of B by the vector z. More concisely morphological erosion is:

A⊖B =
⋂
b∈B

A−b (3.5)

The morphological dilation, in turn, sets a central pixel to the maximum of the
neighbourhood of pixels in an image. Then

A⊕B =
⋃
b∈B

Ab (3.6)

These operations can then be combined to perform morphological opening, which
is commonly used to ”clean up” edges in binary images. Morphological closing can be
written as

A ◦B = (A⊖B)⊕B. (3.7)
Repeating erosion and dilation alternatingly smoothes out the boundary we obtain

from Gaussian mixture model.
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3.2 Workshop Paper: Gaussian Mixture
Models For Robust Unsupervised
Scanning-Electron Microscopy Image
Segmentation Of North Sea Chalk

Published in the First EAGE/PESGB Workshop on Machine Learning.

Abstract: Scanning-Electron images from North Sea Chalk are studied for impor-
tant rock properties. To relieve this manual labor, we investigated several standard
image processing methods that underperformed on complicated chalk. Due to the
lack of manually labeled data, deep neural networks could not be adequately ap-
plied. Gaussian Mixture Models learnt a two-fold representation that separated the
background well from the rock. Subsequent morphological filtering cleans up the pre-
diction and enables automatic analysis.

J. S. Dramsch, F. Amour, and M. Lüthje (2018a). “Gaussian Mixture Models For Ro-
bust Unsupervised Scanning-Electron Microscopy Image Segmentation Of North Sea
Chalk”. In: First EAGE/PESGB Workshop Machine Learning. Published, Chapter 3.
EAGE. doi: 10.3997/2214-4609.201803014. url: https://doi.org/10.3997/
2214-4609.201803014

3.2.1 Introduction
In the oil and gas industry, assessment and prediction of the hydrocarbon reserves and
flow properties throughout a chalk reservoir lifetime relies, among others, on conventional
and special core analysis (CCAL and SCAL) and computed tomography (CT) imaging
in order to characterise the petrophysical properties and 3-D pore network geometry of
chalk.

The latter laboratory experiments are technically challenging, costly, and time-consuming
and require a large amount of core material. Various image analysis techniques, study-
ing the 2-D distribution of grains, pores, and pore throats on thin-sections, have been
extensively tested over more than 50yrs for workflow optimization.

Nevertheless, such techniques have not yet been integrated by reservoir engineers
and geoscientists as a routine task during reservoir characterization, especially, due to a
limited number of samples tested or a spatially-restricted study area that do not allow
the results to be statistically representative of the chalk heterogeneity across a reservoir
and between oil and gas fields.

Back-scattered electron microscopy (BSEM) analysis historically has been very man-
ual work. Separating grains from the background, measuring perimeter and area of the
grains. Recently, publications showed automatic segmentation of BSEM images using

https://doi.org/10.3997/2214-4609.201803014
https://doi.org/10.3997/2214-4609.201803014
https://doi.org/10.3997/2214-4609.201803014
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computational methods. The present study represents a robust method in the appli-
cation of machine learning on thin-section images collected by BSEM. This cheap and
relatively rapid technique allows to quickly analyse a large number of pictures that do
not need to be manually labeled.

3.2.2 Method
3.2.2.1 SEM Analysis as Image Segmentation
Scanning Electron Microscopy (SEM) is an imaging method that allows the visualisation
of the grains and pores of chalk deposits (Figure 3.3). Grayscale images of the rock fabric
can be collected at various scales of observation, from the micro-scale, typically single
pore and grain, to few tens of microns where the network of pores can be studied, to the
millimetres-scale. This provides a complete insight of the heterogeneity of each sample.
Nanotube SEM and many applications separate very well the grains from the background
in the SEM images. Therefore, these images can be segmented by histogram methods.
Carbonates and specifically chalk vary on grayscale, and grains are not illuminated
homogeneously. However, image segmentation has made many improvements in recent
years, which extends the toolkit beyond histogram segmentation.

Figure 3.3: Original SEM image, binary mask obtained by GMM, and resulting grain
image.

Modern Neural Networks (NN) can segment images exceptionally well (Ronneberger
et al., 2015b). Modarres et al. (2017) investigated the application of NNs to SEM
images. However, as with most applications in Geoscience and supervised learning,
we would have to label a significant amount of images by hand to assure quality or
automatically with subpar methods to train the network adequately. This defeats the
point for this application, therefore, this study investigates unsupervised methods, which
will be assessed in order to select the one that performs the best across all scales of
observation. Several BSEM images of the rock fabric at the same scale are also collected
to validate the results.

Gaussian Mixture Model (GMM) learns a number of joint distributions approximated
by Gaussians in the search space (Lindsay, 1995). The number of Gaussians has to be
specified, similar to many clustering methods, like k-means. In this application, we aim
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at segmenting the background from the chalk, which lends itself to specify two Gaussian
distributions as learning parameter to obtain a binary mask, presented in Figure 3.3.

3.2.2.2 Morphological Filtering

Figure 3.4: Filtered segmentation of BSEM

We apply morphological filtering to clean up the segmentation (Serra et al., 1992).
Due to the noisy images of BSEM, the edges of grains appear fuzzy. For the automatic
analysis of the perimeter for instance, seen in Figure 3.4.

Subsequently, we can programmatically analyse the result using scikit-learn and
scikit-image (Pedregosa et al., 2011). This provides area, perimeter and rotation of
grains in the image among other geometrical factors of the grains. These can be very
valuable in digital rock physics and pore analysis.

3.2.3 Conclusions
We present an effective segmentation method for BSEM image data. Gaussian Mixture
Models learn a good representation of the grayscale data and morphological filtering
further improves the results.
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3.3 Computational Granulometry
Identifying the grains in an Backscatter Scanning-Electron Microscopy image enables
us to perform computational granulometry on the images. The segmented images can
be analysed with standard image processing algorithms that can return standard mea-
sures such as perimeter, area, and eccentricity of grains. Moreover, depending on the
preparation of the chalk sample, the angle of orientation can be extracted for each grain.

Figure 3.5a shows the distribution of grain sizes over the image. The data shows an
even distribution toward smaller chalk grains, with three very large samples, that can be
clearly identified in Figure 3.6. Figure 3.5b shows the shape distribution of the grains,
which is distributed toward less circular grains due to compaction. Nevertheless, there
are two strong spikes toward circular grains which is in accordance with our expectation
for chalk oolites.

(a) Grain sizes in SEM image. (b) Deviation from circular disk of grains

Figure 3.5: Granulometry of chalk in SEM images.

Moreover, this analysis enables us to calculate the approximate porosity from the
image. The porosity calculated is 44.25%. The measured porosity of the chalk sample
is 42%, which is close for a 2D image of the 3D pore space.
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Figure 3.6: Backscatter Scanning-Electron Microscopy data with three large chalk grains
outlined from the Gaussian mixture model process (orange). The image shows mostly
brecciated chalk grains with some interspersed circular oolites.

3.4 Contributions of this Study
This study introduced unsupervised Gaussian mixture model clustering for chalk grain
Backscatter Scanning-Electron Microscopy image segmentation. Overall, the method
shows a very good separation of the grains from the background in the image. The
method performs well on images with varying lightness, due to the unsupervised nature
of the GMM algorithm. This model, however, benefits from the contrast between the
light chalk grains and the dark background. Nevertheless, it does outperform classical
methods, i.e. a histogram-based analysis.

Morphological filtering improves the segmentation of the image. The morphological
filtering application is computationally efficient and reliable in removing small scale
variations in the data. The morphological opening smoothes the boundaries between
the grain and the background and remove small grains and possible noise from the
binary labels.

These binary labels enable computational granulometry on the grain data. This
data has good accordance with the image data, as well as measured porosity on the rock
sample. Finally, this method can be used to generate labels for more complex machine
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learning models, i.e. Convolutional Neural Networks.
The code of this analysis is published under J. S. Dramsch (2018b). Reproducible

Code: Gaussian Mixture Models For Robust Unsupervised Scanning-Electron Microscopy
Image Segmentation Of North Sea Chalk. url: https://github.com/JesperDramsch/
backscatter-sem-segmentation.

https://github.com/JesperDramsch/backscatter-sem-segmentation
https://github.com/JesperDramsch/backscatter-sem-segmentation


CHAPTER 4
Transfer learning in
Automatic Seismic

Interpretation
This chapter discusses transfer learning in Automatic Seismic Interpretation. Transfer
learning is a technique that uses a Deep Neural Networks pre-trained on a different data
set that is usually larger and more diverse, which is then fine-tuned to the target data.
Deep Neural Networks are notorious for needing large numbers of diverse annotated
samples. That is often prohibitive to geoscience applications of Machine Learning, where
data is expensive and difficult to acquire, labelling by experts is complicated and prone
to bias (Bond et al., 2007), and often only available within commercial environments.
In “Deep-learning seismic facies on state-of-the-art CNN architectures” (Dramsch et al.,
2018d) we show that state-of-the-arts Convolutional Neural Networks pre-trained on a
natural image data set (ImageNet, cf. Section 2.2.2.4) can be transferred to perform
Automatic Seismic Interpretation. This paper forms the central contribution of this
chapter.

In the computer vision community, hand-labelled data sets like ImageNet, CIFAR,
and PASCAL-VOC are openly available, which catalyzed the development of new archi-
tectures and approaches in deep learning. Geoscientific data is often expensive to acquire,
and companies are reluctant to make data available, even less so for processed or inter-
preted data. Early machine learning workshops often showed results on the open Dutch
F3 dataset; however, national data repositories have started to change this approach
to foster innovation. With data becoming more available recently, the next problem
is the lack of ground truth. Obtaining accurate labels for seismic data is impossible,
as any inversion process is non-unique and digging is not practical. In other imaging-
based fields (e.g. radiology) that rely on the interpretation of imaging results, studies
investigate both inter-interpreter variations, by making several interpretations available
and intra-interpreter variability by re-interpreting the dataset after a set time interval
(McErlean et al., 2013; Alikhassi et al., 2018; Al-Khawari et al., 2010). Additionally,
simulations provide ground truth, but can implicitly include modelling assumptions in
the data or commit the inverse crime (Wirgin, 2004). The inverse crime presents the
problem of modelling and inverting data with the same theoretical ingredients.

In geophysics itself, seismic data presents a unique challenge to computer vision
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problems. Displays of seismic data usually clip amplitudes in the 3rd to 5th percentile to
make most of the seismic amplitude content visible. These particularly strong amplitudes
make up a very small number of the distribution of amplitudes. However, they have
to be contained within the constant dynamic range of the data, while adding minimal
information gain (Forel et al., 2005). Moreover, limiting these outlier amplitudes decom-
presses the main distribution of amplitudes over the full dynamic range. This becomes
particularly important when compressing data to lower bitrates, i.e. from 32-bit floats
to 16-bit floats. Clipping amplitudes has also proven to be a viable preprocessing step
before feeding seismic data to computer vision systems, such as convolutional neural net-
works. Machine learning systems have been known to be vulnerable to noise. This noise
can be physical noise (e.g. low Signal-to-Noise Ratio (SNR)) for simpler models or ad-
versarial attacks that reverse engineer more complex models. These adversarial attacks
on machine learning models attempt to find vulnerabilities in the trained models inten-
tionally. Frequently, these adversarial attacks can provide insights into edge-behaviours
and susceptibility to noise. Adversarial attacks include a one-pixel attack on ImageNet
classifiers, which changes a single value in an image to cause a misclassification (Su
et al., 2019). Humanly imperceptible noise changes the digital image so slightly that
the human eye cannot see a change, but the classifier is led to misclassify the image
(Goodfellow et al., 2014a), which is particularly interesting to physical applications of
machine learning, that can have significant amounts of noise in their data. Alterna-
tively, even physical printed stickers are used to fool a Convolutional Neural Network in
real-world applications (Brown et al., 2017). Besides, geological data contains regions
of geological interest and regions that are inconsequential to geological interpretation.
This selective interpretation of geological features, which has been common in seismic
interpretation, as well as, well-log interpretation is challenging to represent in metrics
adequately (Purves et al., 2019).

Realistically, the limited availability of labelled ground truth data can be addressed in
different ways. In the case when labels are available but not abundant, transfer learning
of highly generalizable models like VGG-16 can be fine-tuned to seismic data. The VGG-
16 architecture can also be included in U-Nets as a decoder to leverage the benefits of
transfer learning in semantic segmentation tasks (Dramsch et al., 2018d). Moreover,
weakly-supervised training can perform label propagation of labelled subsections of the
full data set to unlabeled sets. Unsupervised or self-supervised training can be applicable,
where no reliable ground truth is available. Unsupervised training is applicable, when
a desired operation on the data is known, or an internal structure of the data can be
exploited (Dramsch et al., 2019b). Additionally, multi-task learning has been shown to
be able to stabilize network performance in Natural Language Processing (Liu et al.,
2019b) and Reinforcement Learning (Yu et al., 2019).

Research into deep convolutional networks showed that the data in the network
would lose signal with increasing depth, named vanishing gradient problem (Hochreiter,
1998). This vanishing gradient problem led to the limitation of VGG at 19 layers; this is
detailed further in Section 2.2.2.6. Residual blocks introduced a solution to this problem
by implementing a shortcut between the original data and the output from the block.
Figure 2.14 presents the original ResNet block architecture, which was used in ResNet-50
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and ResNet-101 in Figure 4.1 (He et al., 2016). Details on ResNet blocks differ, the main
take-away being the sum or concatenation of the original data with the block output.
DenseNets (Huang et al., 2017) and Inception-style networks (Szegedy et al., 2015) are
other approaches to build deeper NNs.

Figure 4.1: Top-5 Accuracies of Neural Architectures on ImageNet plotted against Mil-
lion Parameters, color-coded to similar network type. Data and references shown in
Table A.1

Figure 4.1 additionally contains several classes of Neural Network architectures,
namely AmoebaNet, NASNet, and EfficientNet. These categories are a more recent de-
velopment in neural architecture research, based on Neural Architecture Search (NAS),
which automates the search for novel architectures instead of completely hand-tuning
new developments. This optimization scheme to search for neural architectures has
been developed to include different optimization objectives. The AmoebaNet is based
on Evolutionary Computing (EC), a numeric optimization technique mimicking biolog-
ical evolution, and subsequent fine-tuning of the solution to search for an ideal neural
architecture to perform image classification (Real et al., 2019). The NASNet goes on
with fixed overall architecture, but uses a controller Recurrent Neural Network (RNN)
to modify the blocks within the architecture (Zoph et al., 2018). The EfficientNet archi-
tecture was also acquired by NAS, by optimizing for both accuracy and Floating-Point
Operationss (FLOPs). Optimizing for FLOPs reduces the computational cost of the
final architecture (Tan et al., 2019b). Moreover, Tan et al. (2019b) derives a method of
simultaneously scaling multiple dimensions in deep neural networks named compound
scaling. The standard ResNet-50 and ResNet-101 differ only in-depth, whereas com-
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pound scaling establishes a relationship between depth, width and resolution-scaling of
deep neural networks using a single scaling parameter.

VGG-16 and ResNet-52 are two network architectures that are used in the paper in
this chapter. These can be identified in Figure 4.1. The performance of both models
in the Top-5 accuracy on ImageNet is comparable, while the number of parameters
vastly differ. VGG-16 contains 138 million parameters, while ResNet- 52 contains 23
million parameters, the VGG-16 network is, however, 16 layers deep, while Resnet-52
contains 52 layers. These networks are compared to the end-to-end trained CNN built
by Waldeland et al. (2016).

4.1 Training and Fine-Tuning
The training of the three networks in this chapter, namely Waldeland CNN, VGG-16, and
Resnet-52, requires different strategies to obtain optimal results. The Waldeland CNN
is end-to-end trained on the training data. The VGG-16 and ResNet-52 are fine-tuned
with pre-trained weights, which require a lower learning rate and fixing the weights
in parts of the network. The networks are trained with the categorical cross-entropy
loss discussed in (2.15). The categorical cross-entropy enables training on multi-class
labels by optimizing the multi-variate negative log-likelihood. It is reprinted here for
convenience:

CE = −
C∑
j

yj log (oj)

The VGG-16 model has the first seven layers frozen. The ResNet-52 has the first 44
layers frozen. This ensures that the most general features are preserved, while higher
abstraction features in layers can be adjusted to the training data. Moreover, the last
layer that outputs the classification has to be replaced by an appropriate layer, which
instead of predicting 1000 classes for ImageNet, predicts the number of classes in our
training set 9.

The training relies on the custom loader presented in Appendix E.2.4. This loader
extracts patches from the 2D seismic image and the according label and provides a
convenient generator. This generator can perform the data preparation on CPU while
the training is performed on GPU. Additionally, the training is monitored to implement
an early-stopping procedure. This enables us to stop the training when the validation
loss and validation accuracy deteriorate. This avoids overfitting of the network, which
is particularly essential when fine-tuning an over-parametrized network to smaller-scale
data.

4.1.1 End-to-End CNN training
The training of the Waldeland CNN is trained end-to-end. The optimizer for the Walde-
land CNN is the Adam optimizer (Kingma et al., 2014) with a learning rate of 0.001,
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the decay of first-order moments of β1 = 0.9, and second-order moments of β2 = 0.999.

Figure 4.2: Accuracy and Categorical Cross Entropy for Waldeland CNN

Figure 4.2 shows the training loss of end-to-end training. The accuracy shows that
the network very quickly reaches 100% accuracy on the training data while performing
close to perfect on the test set. The training is stopped after ten epochs. The loss shows
that the model starts overfitting at epoch 7. A dataset with more diverse labels and
samples would improve this situation.

4.1.2 Fine-Tuning Pre-Trained Networks
Pre-trained networks were trained on a dataset and made available by the researchers
and companies, including weights and biases. These are often trained on large corpuses
of data. In computer vision, classically pre-trained networks were trained on ImageNet,
CIFAR, and PASCAL-VOC. The state-of-the-art (SOTA) networks are pre-trained on up
to a billion images with 17,000 labels and subsequently fine-tuned on the ImageNet-1K
dataset (Mahajan et al., 2018). This strategy is applied across deep learning, including
computational linguistics with 175 billion parameters pre-trained on 0.499 trillion words
in GPT-3 (Brown et al., 2020). The pre-trained networks in this chapter were trained
on the ImageNet corpus and transferred to the MaleNov seismic dataset (Ildstad et al.,
2017).

The VGG-16 and ResNet-52 are finetuned using Stochastic Gradient Descent (SGD)
with Nesterov momentum. The learning rate for the SGD is set to 0.0001, with a
momentum of 0.9. Additionally, a learning rate schedule is implemented that updates
the learning rate (lr) according to lr(t) = 0.0001 · (1 + 10−6 · t)−1.

The VGG-16 network quickly converges to 100% accuracy, the loss, however smoothly
converges towards a cross-entropy of 0.1. The network does not show signs of overfitting
and trains the full 20 epochs. With the available hardware at the time of writing the
paper and the good results despite possibly increasing the convergence.

The ResNet-52 network immediately reports a training accuracy of close to 100%
while the test data report 11% accuracy, which is a performance equivalent to random
chance on this dataset containing nine classes. The loss in Figure 4.4 shows the same
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Figure 4.3: Accuracy and Categorical Cross Entropy for VGG16 CNN

Figure 4.4: Accuracy and Categorical Cross Entropy for ResNet52 CNN

problem of a massively overfit network. For this reason, the network predictions were
not displayed in the paper in this chapter.
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4.2 Conference Paper: Deep learning
seismic facies on state of the art CNN
architectures

Abstract: We explore propagation of seismic interpretation by deep learning in
stacked 2D sections. We show the application of state-of-the-art image classification
algorithms on seismic data. These algorithms were trained on big labeled photograph
databases. We use transfer learning to benefit from pre-trained networks and evaluate
their performance on seismic data.

J. S. Dramsch and M. Lüthje (2018d). “Deep-learning seismic facies on state-of-
the-art CNN architectures”. In: SEG Technical Program Expanded Abstracts 2018.
Published, Chapter 4. Society of Exploration Geophysicists, pp. 2036–2040. doi:
10.1190/segam2018-2996783.1. url: https://doi.org/10.1190/segam2018-
2996783.1

4.2.1 Introduction
Seismic interpretation is often dependent on the interpreters experience and knowledge.
While deep learning cannot replace expert knowledge, we explore the accuracy of con-
volutional networks in interpreting seismic data to support human interpretation.

In the 1950s neural networks started as a simple direct connection of several nodes in
an input layer to several nodes in an output layer (Widrow et al., 1990). In geophysics
this puts us to the introduction of seismic trace stacking (Yilmaz, 2001a). In 1989 the
first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation
was formalized as an error-propagation mechanism (Rumelhart et al., 1988a). In 2012
the paper (Krizhevsky et al., 2012a) propelled the field of deep learning forward imple-
menting essential components, namely GPU training, ReLu activation functions (Dahl
et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models
in the ImageNet challenge (Deng et al., 2009a) by almost halving the prediction error.
Waldeland et al. (2016) showed that neural networks can be used to classify salt diapirs
in 3D seismic data. Rutherford Ildstad et al. (2017) generalized this work to nD and
beyond two classes of salt and ”else”.

The task of automatic seismic interpretation can be equated to dense object detection
(Lin et al., 2017) or semantic segmentation. These tasks are currently best solved by
Mask R-CNN architectures (Long et al., 2015). Statoil has used U-Nets for automatic
seismic interpretation. Yet, classification networks can be used for semantic segmenta-
tion, but are significantly slower. The benefit is a testable example of generalization of
pre-trained networks form photographic data to seismic images. As well as, a testable
framework for choosing hyper-parameters for neural networks on seismic data.

https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.1190/segam2018-2996783.1
https://doi.org/10.1190/segam2018-2996783.1
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Deep learning relies heavily on vast amounts of labeled data to train on initially.
However, the features learned from these networks can often be transferred to adja-
cent problem spaces (Baxter, 1998). Often these transfer learning tasks are tested on
photographs rather than seismic or medical imaging tasks. The aim of this study is
to evaluate state-of-the-art pre-trained networks in the task of automatic seismic inter-
pretation. We compare three convolutional neural networks of increasing complexity
in the task of supervised automatic seismic interpretation. We evaluate these tasks
qualitatively and quantitatively.

4.2.2 Methods
The neural networks in this study learn supervised. The features were published along-
side the open source framework MalenoV and describe nine seismic facies in the open
F3 data set. The classes describe steep dipping reflectors, salt intrusions, low coherency
regions, low amplitude dipping reflectors, high amplitude regions continuous high am-
plitude regions and grizzly amplitude patterns presented in figure 4.7. Additionally, a
catch-all “else” region are picked. In this approach we chose Keras (Chollet et al., 2015a)
with a Tensorflow (Martı́n Abadi et al., 2015) backend on a K5200 GPU at DHRTC.
Keras is a high level abstraction of tensor arithmetics. Tensorflow is an open source
numerical computation library on static graphs. We train 2D convolutional neural net-
works (CNN) of varying depth on seismic slices to propagate single slice interpretations
to a volume. CNNs are highly flexible models for computer vision tasks.

Network one depicted in figure 4.5 was developed by Waldeland et al., 2016 to iden-
tify salt bodies in 3D seismic data. Three layers are fully connected for classification.
The network uses a kernel of 5 by 5 pixels for convolution and a stride of 2 for down-
sampling. We use the Adam optimizer and cross-categorical entropy as a loss function.
The Adam optimizer is an extension to stochastic gradient descent (SGD) that imple-
ments adaptive learning rates and bias correction (Ruder, 2016). We add dropout and
batch normalization to the network. These methods improve regularization and prevent
overfitting. Furthermore, we use early-stopping to prevent overfitting the model by over-
training. We chose two metrics to monitor in the training and validation sets, namely
mean absolute error and accuracy. The Waldeland CNN is relatively shallow compared
to modern deep learning networks with 95,735 parameters to optimize for.

Network two is the VGG16 network (Simonyan et al., 2014b) by the Visual Geometry
Group. It contains 16 layers and 1,524,2605 parameters. 13 of these layers ore convolu-
tional layers with a 3x3 kernel. Convolutional blocks are interspersed with max-pooling
layers for down-sampling. The last three layers are fully connected layers for classifica-
tion. The VGG16 architecture was proposed for the ImageNet challenge in 2013. It is
widely used for it’s simplicity in teaching and it’s generalizability in transfer learning
tasks.

Network three is the ResNet50 architecture by Microsoft. The network consists
of 50 layers with 2,361,6569 parameters. It implements a recent development, called
residual blocks. These residual blocks add a skip- or identity-connection around a stack
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Figure 4.5: Waldeland CNN architecture. Input at the Top. Softmax Classification
Layer on bottom. Width of objects shows log of spatial extent of layer. Height shows
log of complexity of layer. The layers are color coded to show similar purpose.
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Figure 4.6: VGG16 architecture. Same visualization as figure 4.5
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of 1x1, 3x3, 1x1 convolutional layers (He et al., 2016). The 1x1 are identity convolutions,
used for down- and subsequent up-sampling to decrease the computational cost of very
deep CNNs. The convolutional layers are followed by one fully connected layer for
classification.

All networks use rectified linear units (ReLu) as neural activation. The last layer uses
Softmax as activation to output a probability for each class. Training both VGG16 and
the ResNet50 end to end would be very expensive. These models have been trained on
big labeled data that are not available in geoscience. However, transfer learning enables
us to use pre-trained networks on very different tasks. In transfer learning, we use the
learned weights of the networks and replace the fully connected layers. These untrained
layers are specific to our task and have to be fine-tuned to the data. This process is very
fast and requires little data. We fine-tune an entire network on one sparsely interpreted
2D seismic slice. For the fine-tuning process, we replace the Adam optimizer by a classic
SGD optimizer with lower learning rate, very low weight decay and Nesterov momentum.
We still use early-stopping on validation loss and cross-categorical entropy.

We added the same fully connected layer architecture to VGG16 and ResNet50 that
Waldeland added to their architecture. Therefore, we test if pre-trained convolution
kernels are fit to recognize texture features in seismic data. We set up a validation set to
quantify the accuracy of our networks on previously unseen data. Additionally, we set
up a prediction pipeline to populate each one 2D inline and crossline of the seismic data
to qualitatively visualize the prediction capability of the networks. The labels for the
supervised interpretation are taken from the MalenoV interpretation by ConocoPhillips,
shown in figure 4.7.

Network Run Loss MAE Acc
Waldeland CNN Training 0.001 0.000 100.0%

Test 0.003 0.000 99.9%
VGG16 Training 0.010 0.005 99.8%

Test 0.127 0.026 100.0%
ResNet50 Training 0.011 0.001 100.0%

Test 14.166 0.195 12.1%

Table 4.1: Training and Test scores on Networks. Test scores are prediction results on
a labeled hold-out data set. Mismatch of test and training scores indicates over-fitting.

4.2.3 Results
We use the open Dutch F3 data set to calibrate our predictions. Crossline 339 has been
interpreted by ConocoPhillips and made available freely. We show results of crossline
slice 500. We have used the same plotting parameters for both either results, both have
been generated programatically, without human intervention. Figure 4.8a shows the
prediction of the Waldeland CNN at every location of the 2D slice based on a 65 x 65
patch of the data. Border patches were zero padded. We see clear patches for the low
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Figure 4.7: Labeled data set on one 2D inline slice. Color interpretation: Low coherency
(brown), Steep dipping reflectors (gray), low amplitude dipping reflectors (grass green),
continuous high amplitude regions (blue), grizzly (orange), low amplitude (yellow), high
amplitude (magenta), salt intrusions (gray), else (turquoise).

coherency region in brown. The low amplitude dipping (grass green) region has been
reproduced well, however some regions at t ≈ 1080 ms have been marked incorrectly,
where two seismic packages meet. This faulty region also contains patches that were
interpreted as low amplitude region (yellow). While this may be a low amplitude region,
we expect the packages to be largely continuous, which leaves this interpretation as ques-
tionable at best. The gray area was reproduced well, however it was marked as salt body
in the original manuscript, this would be incorrect here. We see the grizzly amplitude
pattern (orange) and the low amplitude (yellow) regions are well-defined and separated.
The underlying package of high amplitudes has been identified will. However, between
location 600 - 800 the top part was marked as ”else” (turquoise), which undesirable but
correct, judging from the texture. Here, retraining would be possible by feeding this
relabeled region to the network. Below this region, the networks predictions become
erratic. The classification is blocky between grizzly and salt with ”else” interspersed.
However, the edges will often give problems due to the padding. Around location 800
high amplitudes (orange) have been mislabeled as grizzly amplitudes.

The VGG16 network classification is shown in figure 4.8b. The network performs
similar to the Waldeland CNN in figure 4.8a, however some key differences will be
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pointed out. The separation of low coherency and the ”else” region around t ≈ 400 ms
is less defined and, therefore, worse. The coherency of low amplitude dipping (grass
green) and high amplitude continuous (blue) is worse in the region around location 280,
t ≈ 800 ms. This might be due to higher sensitivity to declines in seismic quality. Below
t ≈ 1000 ms the ”else” region is free from differing patches, in contrast, the Waldeland
CNN interspersed two other classes in this region. VGG16 also classifies some ”else”
regions in the high amplitude (magenta) region between location 600-800. The area
around location 200 below the high amplitude (magenta) region is also blocky, although
less so. The misclassification of the bottom high amplitude (magenta) region as grizzly
(orange) is less pronounced in the VGG16 interpretation. It is present toward the bottom
left corner.

The results of the ResNet50 are not shown. The network classifies all seismic facies
as ”else”. This indicates that the network is overfitting the data. This is supported
by the numeric results presented in table 4.1. The network training error indicates a
perfect fit to the data, whereas the test score is unseen data with labels to evaluate the
performance of networks on unseen data. While both the Waldeland CNN and VGG16
perform well, the ResNet50 performs very poorly.

4.2.4 Conclusion
Convolutional neural networks show good results for propagating interpretations through
seismic cubes. The pre-trained VGG16 CNN has shown very good results in adapting
to seismic texture identification. Transfer learning was fast and the results are similar
to the shallower Waldeland CNN. Both networks have trade-offs in the misclassification
and can be improved upon.

The ResNet50 was shown to be ineffective on transfer learning seismic data with
pre-trained weights. This is in accordance with results from other attempts at transfer
learning. The ResNet filters are more specific to photography and transfer poorly to
other data sources, where the VGG learned features prove to be more general to computer
vision tasks. More complicated architectures may perform well, trained directly with
the according data, but they learn specific features fit for the problem space that do not
transfer well.
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(a) Waldeland CNN automatic interpretation of crossline 500.

(b) VGG16 automatic interpretation of crossline 500.

Figure 4.8: Automatic seismic interpretation with CNNs. Color interpretation: Low
coherency (brown), Steep dipping reflectors (gray), low amplitude dipping reflectors
(grass green), continuous high amplitude regions (blue), grizzly (orange), low amplitude
(yellow), high amplitude (magenta), salt intrusions (gray), else (turquoise).
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4.3 Applications of Transfer Learning for
Automatic Seismic Interpretation

Figure 4.8a shows the results of a fully trained network compared to a pre-trained
network. The pre-trained network decreases both training time and data requirements
significantly, while not compromising accuracy. A pre-trained network with diverse
generalizable learned filters seems to alleviate some limitations of smaller non-diverse
data sets used in the fine-tuning process. These pre-trained networks themselves are of
little use to most applications in geoscience. Nevertheless, they can be integrated into
more task-appropriate Neural Network architectures that leverage the pre-training.

Apart from building deeper networks for image classification, the neural architectures
can serve as a forcing function to the task the network is built for. Encoder-Decoder
networks will compress the data with a combination of downsampling layers, which in
the case of a computer vision could either be strided convolutions or pooling layers after
convolutional layers. During these operations, the number of filters increases, while the
spatial extent is diminished significantly. This encoding operation is equivalent to lossy
compression, with the low-dimensional layer called ”code” or ”bottleneck”. The bottle-
neck is then upsampled by either strided transpose Convolutions or upsampling layers
that perform a specified interpolation. This is the decoder of the Encoder-Decoder pair.
These networks can be used for data compression in AutoEncoders (AEs), where the de-
coder restores the original data as good as possible (Hinton et al., 2006). Alternatively,
the decoder can learn a dense classification task like semantic segmentation or seismic
interpretation.

U-Nets present a special type of encoder-decoder networks that learn semantic seg-
mentation on from small datasets (Ronneberger et al., 2015a). They form a special kind
of Fully Convolutional Network (FCN) shown in Figure 2.15. Originally developed on
biomedical images, the network found wide acceptance in label-sparse disciplines. The
U-Net implements shortcut connections between convolutional layers of equal extent in
the Encoder and Decoder networks. This alleviates the pressure of the network learning
and reconstructing the output data from the bottleneck in isolation.

The data set in this training is very small and non-diverse as shown in Figure 4.7 and
this only made training on a classification network possible. Image segmentation would
need a dense labelling of the training data and more than one 2D section available. This
has been approached by Alaudah et al. (2019) by labelling the full Dutch F3 dataset,
which cites the paper presented here. Modern applications of transfer learning were able
to leverage ResNet architectures as an encoder in U-nets on seismic data (Babakhin
et al., 2019a).
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4.4 Contributions of this Study
This study introduced transfer learning for deep learning tasks in Automatic Seismic
Interpretation and has found an application across geophysics (see e.g. Babakhin et al.,
2019b; Li et al., 2019; Liu et al., 2019a). The transfer learning enables utilizing neural
networks that were trained on a diverse dataset and then fine-tuning them with data that
contains far fewer samples. This outperforms smaller networks that can be trained end-
to-end on these small datasets. The code is available at J. S. Dramsch (Dec. 15, 2018a).
Reproducible Code: Deep-learning seismic facies on state-of-the-art CNN architectures.
doi: 10.6084/m9.figshare.7227545. url: https://github.com/JesperDramsch/
seismic-transfer-learning.

https://doi.org/10.6084/m9.figshare.7227545
https://github.com/JesperDramsch/seismic-transfer-learning
https://github.com/JesperDramsch/seismic-transfer-learning


CHAPTER 5
Complex-valued neural

networks
In the paper “Complex-valued neural networks for machine learning on non-stationary
physical data” (Dramsch et al., 2019f) I explore complex-valued deep convolutional net-
works to show that phase content in non-stationary data improves generalization of
CNNs. This work implements self-supervised AutoEncoders (AEs) that compress the
data and measure the reconstruction of the seismic data.

Four different deep convolutional AutoEncoders are constructed. Two AutoEncoders
are real-valued and two AutoEncoders are complex-valued. The complex-valued Con-
volutional Neural Network is implemented as two real-valued feature maps, one for the
real component a and one for the complex component b each, which are combined into
a complex-valued number with a + bi. The complex convolution is then implemented
explicitly in the calculation to avoid some drawbacks of using complex numbers by a
computer. However, matching the networks proved to be a complicated task with regard
to the number of parameters. This led to building four different architectures that get
progressively bigger and compare the results.

This study implements AutoEncoders to increase the validity of this experiment.
While Variational AutoEncoders have shown better performance on reconstruction tasks,
it would also introduce more variability in the network to control for. Considering that
Automatic Seismic Interpretation is a fairly new discipline, it is difficult to disambiguate
effects on misclassification. These effects include erroneous labels, the difficulty of the
task of Automatic Seismic Interpretation, as well as the choice of architecture.

Therefore, this leads us to the decision to inspect the reconstructed seismic data
numerically. Signal analysis is well-explored in the seismic data processing. Moreover,
this enables analysing the result in the Frequency-Wavenumber (FK)-domain providing
additional insight to the denoising effect of the AutoEncoders. Overall, the complex-
valued networks result in smaller networks compared to a larger real-valued network
achieving comparable reconstruction error.
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5.1 Journal Paper: Complex-valued neural
networks for machine learning on
non-stationary physical data

Abstract: Deep learning has become an area of interest in most scientific areas,
including physical sciences. Modern networks apply real-valued transformations on
the data. Particularly, convolutions in convolutional neural networks discard phase
information entirely. Many deterministic signals, such as seismic data or electrical
signals, contain significant information in the phase of the signal. We explore complex-
valued deep convolutional networks to leverage non-linear feature maps. Seismic
data commonly has a lowcut filter applied, to attenuate noise from ocean waves and
similar long wavelength contributions. In non-stationary data, the phase content can
stabilize training and improve the generalizability of neural networks. While it has
been shown that phase content can be restored in deep neural networks, we show how
including phase information in feature maps improves both training and inference from
deterministic physical data. Furthermore, we show that smaller complex networks
outperform larger real-valued networks.

J. S. Dramsch, M. Lüthje, and A. N. Christensen (2019f). “Complex-valued neural
networks for machine learning on non-stationary physical data”. In: Computers &
Geoscience. Accepted, Chapter 5

5.1.1 Introduction
Seismic data has its caveats due to the complicated nature of bandwidth-limited wave-
based imaging. Common problems are cycle-skipping of wavelets and nullspaces in
inversion problems (Yilmaz, 2001b). Automatic seismic interpretation is complicated,
as the modelling of seismic data is computationally expensive and often proprietary.
Seismic field data is often not available and their interpretation is highly subjective and
ground truth is not available. The lack of training data has been delaying the adoption
of existing methods and hindering the development of specific geophysical deep learning
methods. Incorporating domain knowledge into general deep learning models has been
successful in other fields (Paganini et al., 2017).

The state-of-the-art method has been an iterative windowed Fourier transform for
phase reconstruction (Griffin et al., 1984). Modern neural audio synthesis focuses on
methods that do not require explicit reconstruction of the phase (Mehri et al., 2016; Oord
et al., 2016; Oord et al., 2017; Prenger et al., 2018). Mehri et al. (2016) introduced a
recurrent neural network formulation, where Oord et al. (2016) reformulated the network
for audio synthesis in a strided convolutional network. The original WaveNet formulation
in Oord et al. (2016) is slow due to the autoregressive filter, warranting the parallel
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formulation in Oord et al. (2017).
We explicitly incorporate phase information in a deep convolutional neural network.

These have been heavily explored in the digital signal processing community, before
the recent renaissance of neural networks and deep learning. Relevant examples to
seismic data processing include source separation (Scarpiniti et al., 2008), adaptive noise
reduction (Suksmono et al., 2002), and optical flow (Miyauchi et al., 1993) with complex-
valued neural networks. Sarroff (2018) gives a comprehensive overview of applications
of complex-valued neural networks in signal and image processing.

In this work, we evaluate the reconstruction error after compression in an autoen-
coder to test how reliable information can be contained within a network with and
without explicit phase information. This insight can be transferred to the aforemen-
tioned applications that benefit from an increase in information recovery. We calculate
the complex-valued seismic trace by applying the Hilbert transform to each trace. Phase
information has been shown to be valuable in the processing (Liner, 2002) and interpre-
tation of seismic data (Roden et al., 1999; Mavko et al., 2003). Purves (2014) provides
a tutorial that shows the implementation details of Hilbert transforms.

In this paper we give a brief overview of convolutional neural networks and then
introduce the extension to complex neural networks and seismic data. We show that in-
cluding explicit phase information provides superior results to real-valued convolutional
neural networks for seismic data. Difficult areas that contain seismic discontinuities
due to geologic faulting are resolved better without leakage of seismic horizons. We
train and evaluate several complex-valued and real-valued autoencoders to show and
compare these properties. These results can be directly extended to automatic seismic
interpretation problems.

5.1.2 Complex Convolutional Neural Networks

5.1.2.1 Basic principles

Convolutional neural networks (LeCun et al., 1999) use multiple layers of convolution
and subsampling to extract relevant information from the data (see Figure 5.1)

The input image is repeatedly convolved with filters and subsampled. This creates
many, but smaller and smaller images. For a classification task, the final step is then a
weighting of these very small images leading to a decision about what was in the original
image. The filters are learned as part of the training process by exposing the network to
training images. The salient point is, that the convolution kernels are learned based on
the training. If the goal is - for example - to classify geological facies, the convolutional
kernels will learn to extract information from the input, that helps with that task. It is
thus a very strong methodology, that can be adapted to many tasks.
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Figure 5.1: Schematic of equivalent real- and complex-valued convolutional neural net-
works. Yellow is the input image data and purple shows the 3 × 3 convolutional filters.
In (a) the input image is convolved with filters. This results in several smaller outputs.
The process is repeated, resulting in more outputs even further reduced in size. In (b) we
present the complex-valued network. We start with a complex valued input represented
by two layers, namely the real-valued a and complex-valued b complement in a+ ib. The
complex information is propagated through the network by keeping - in each step - the
real and complex information in different layers after convolution with complex-valued
filters.

5.1.2.2 Real- and Complex-valued Convolution
Convolution is an operation on two signals f and g or a signal and a filter that produce a
third signal, containing information from both of the inputs. An example is the moving
average filter, which smoothes the input, acting as a low-pass filter. Convolution is
defined as

f(t) ∗ g(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ, (5.1)

at the location τ . While often applied to real value signals, convolution can be used on
complex signals. For the integral to exist both f and g must decay when approaching
infinity. Convolution is directly generalizable to N-dimensions by multiple integrations
and maintains commutativity, distributivity, and associativity. In digital signals this
extends to discrete values by replacing the integration with summation.

5.1.2.3 Complex Convolutional Neural Networks
Complex convolutional networks provide the benefit of explicitly modelling the phase
space of physical systems (Trabelsi et al., 2017). Unfortunately it is not possible to
feed complex numbers directly to a CNN, as they are not supported by any of the
standard implementations (PyTorch or Tensorflow). Instead, we can represent them in
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Figure 5.2: Implementation details of Complex Convolution (Courtesy Trabelsi et al.
(2017))
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another form. The complex convolution introduced in Section 5.1.2.2, can be explicitly
implemented as convolutions of the real and complex components of both kernels and the
data. A complex-valued data matrix in cartesian notation is defined as M = Mℜ + iMℑ
and equally, the complex-valued convolutional kernel is defined as K = Kℜ + iKℑ. The
individual coefficients (Mℜ,Mℑ, Kℜ, Kℑ) are real-valued matrices, considering vectors
are special cases of matrices with one of two dimensions being one.

Solving the convolution of

M ′ = K ∗M = (Mℜ + iMℑ) ∗ (Kℜ + iKℑ), (5.2)

we can apply the distributivity of convolutions (cf. section 5.1.2.2) to obtain

M ′ = {Mℜ ∗Kℜ −Mℑ ∗Kℑ}+ i{Mℜ ∗Kℑ +Mℑ ∗Kℜ}, (5.3)

where K is the Kernel and M is a data vector (see Figure 5.2).
We can reformulate this in algebraic notation[

ℜ{M ∗K}
ℑ{M ∗K}

]
=

[
Kℜ −Kℑ
Kℑ Kℜ

]
∗

[
Mℜ
Mℑ

]
(5.4)

Complex convolutional neural networks learn by back-propagation. Sarroff et al.
(2015) state that the activation functions, as well as the loss function must be com-
plex differentiable (holomorphic). Trabelsi et al. (2017) suggest that employing complex
losses and activation functions is valid for speed, however, refers that Hirose et al. (2012)
show that complex-valued networks can be optimized individually with real-valued loss
functions and contain piecewise real-valued activations. We reimplement the code Tra-
belsi et al. (2017) provides in keras (Chollet et al., 2015a) with tensorflow (Martı́n
Abadi et al., 2015), which provides convenience functions implementing a multitude of
real-valued loss functions and activations.

While common up- and downsampling functions like MaxPooling, UpSampling, or
striding do not suffer from complex-valued neural networks, batch normalization (BN)
(Ioffe et al., 2015) does. Real-valued batch normalization normalizes the data to zero
mean and a standard deviation of 1. This does not guarantee normalization in com-
plex values. Trabelsi et al. (2017) suggest implementing a 2D whitening operation as
normalization in the following way.

x̃ = V − 1
2 (x− E[x]), (5.5)

where x is the data and V is the 2x2 covariance matrix, with the covariance matrix being

V =
[
Vℜℜ Vℜℑ
Vℑℜ Vℑℑ

]
(5.6)

Effectively, this multiplies the inverse of the square root of the covariance matrix with the
zero-centred data. This scales the covariance of the components instead of the variance
of the data (Trabelsi et al., 2017).
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Figure 5.3: Typical autoencoder architecture. The data is compressed to a low dimen-
sional bottleneck, and then reconstructed. In the encoder convolutional layers (yellow)
are followed by a down-sampling operation (red) to reduce the spatial extend of the
input image. The bottleneck contains a lower-dimensional compressed representation of
the input. The decoder contains upsampling operations (blue) followed by convolutional
layers symmetrical to the encoder. Alternatively, the encoder is sometimes made up of
transpose convolutions.

5.1.2.4 Autoencoders
Autoencoders (Hinton et al., 2006) are a special configuration of the encoder-decoder
network that map data to a low-level representation and back to the original data. This
low-level representation - the latent space - is often called bottleneck or code layer.
Autoencoder networks map f(x) = x, where x is the data and f is an arbitrary network.
The architecture of autoencoders is an example of lossy compression and recovery from
the lossy representation. Commonly, recovered data is blurred by this process.

The principle is illustrated in figure 5.3. The input is transformed to a low-dimensional
representation - called a code or latent space - and then reconstructed again from this
low dimensional representation. The intuition is, that the network has to extract the
most salient parts from the data, to be able to perform a reconstruction. As opposed
to other methods for dimensionality reduction - e.g. principal component analysis -
an autoencoder can find a non-linear representation of the data. The low-dimensional
representation can then be used for anomaly detection, or classification.

5.1.3 Aliasing in Patch-based training

5.1.3.1 Mean-Shift in Neural Networks
A single neuron in a neural network can be described by σ(w · x + b), where w is the
network weights, x is the input data, b is the network bias, and σ is a non-linear activation
function. During training, the network weights w and biases b are are adjusted to a value
that represents the training minimum. Learning on a mean-shift of q of an arbitrary
distribution over x leads to σ(w · (x+ q) + b), which increases the neuron response by q,
weighted by w. During inference, both w and b are fixed, by extension the mean-shift
q is fixed as well. The mean-shift over larger inference data disappears, introducing
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an additional bias of w · q before non-linear activation. This training bias may lead to
prediction errors of the neuron and consequently the full neural network.

5.1.3.2 Windowed Aliasing
Non-stationary data such as seismic data can contain sections within the data that
contain spurious offsets from the mean. Figure 5.4 shows varying sizes of cutouts, with
101 and 256 samples respectively. In the middle, the full normalised amplitude spectra
are presented. On the right, the corresponding phase spectra are presented. On the left,
we focus on the frequency content of the amplitude spectra around 0 Hz. The cutouts
were Hanning tapered, however, a mean shift appears for any patch size.

These concepts of mean-shift corresponds to a DC offset in spectral data, which
can be audio, seismic or electrical data. In images this corresponds to a non-zero alpha
channel. While batch normalization can correct the mean shift in individual mini-batches
(Ioffe et al., 2015), this may shift the entire spectrum by the aliased offset. Additionally,
batch normalization may not be feasible in some physical applications pertaining to
regression tasks.

Figure 5.4: Spectral aliasing dependent on window-size (modified from Dramsch et al.
(2018e)). The true amplitude spectrum (green) is 0 at a frequency of 0 Hz, whereas
windows of the data experience low-frequency aliasing that introduce a non-zero offset
at 0 Hz analogous to the Nyquist-Shannon theorem for high frequencies.
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5.1.4 Complex Seismic Data
Complex seismic traces are calculated by applying the Hilbert transform to the real-
valued signal. The Hilbert transform applies a convolution with to the signal, which is
equivalent to a -90-degree phase rotation. It is essential that the signal does not contain
a DC component, as this would not have a phase rotation.

The Hilbert transform is defined as

H(u)(t) = 1
π

∫ ∞

−∞

u(τ)
t− τ

dτ, (5.7)

of a real-valued time series u(t), where the improper integral has to be interpreted
as the Cauchy principal value. In the Fourier domain, the Hilbert transform has a
convenient formulation, where frequencies are set zero and the remaining frequencies
are multiplied by 2. This can be written as

xa = F−1(F (x)2U) = x+ iy (5.8)

where xa is the analytical signal, x is the real signal, F is the Fourier transform, and
U is the step function. The imaginary component y is simultaneously the quadrature
of the real-valued trace. This provides locality to explicit phase information, where the
Fourier transform itself does not lend itself to the resolution of the phase in the time
domain. In conventional seismic trace analysis, the complex data is used to calculate
the instantaneous amplitude and instantaneous frequency. These are beneficial seismic
attributes for interpretation (Barnes, 2007).

5.1.5 Experiments

5.1.5.1 Data
The data is the F3 seismic data, acquired in the Dutch North Sea in 1987 over an area
of 375.31 km2. The sampling-rates are 4 ms in time and inline/crossline bins of 25 m.
The extent being 650 inline traces and 950 crossline traces with a total length of 1.848 s.
The data contains faulted reflector packets, of which the lowest one overlays a salt diapir.
The data contains some noise that masks lower-amplitude events.

We generate 2D patches of size 64x64 in the inline and crossline direction from the
3D volume to train our network. We obtain inline and crossline 64x64 patches that are
taken overlapping with a stride of 8 samples. The total amount of data is 188736 patches
with 141552 for training and 47184 for validation in a 75/25 train-validation split. The
test data is the holdout Alaudah et al. (2019) stored in test_once. The seismic data is
normalized to values in the range of [-1, 1]. To obtain complex-valued seismic data we
apply a Hilbert transform to every trace of the data and subtract the real-valued seismic
from the real component as laid out in Taner et al. (1979).
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Layer Spatial Complex Real Complex Real
(Size) X Y Small Small Large Large
Input 64 64 2 1 2 1
(C)-Conv2D 64 64 8 8 16 16
(C)-Conv2D + BN 64 64 8 8 16 16
Pool + (C)-Conv2D + BN 32 32 16 16 32 32
Pool + (C)-Conv2D + BN 16 16 32 32 64 64
Pool + (C)-Conv2D + BN 8 8 64 64 128 128

Pool + (C)-Conv2D 4 4 128 128 256 256

Up + (C)-Conv2D + BN 8 8 64 64 128 128
Up + (C)-Conv2D + BN 16 16 32 32 64 64
Up + (C)-Conv2D + BN 32 32 16 16 32 32
Up + (C)-Conv2D 64 64 8 8 16 16
(C)-Conv2D + BN 64 64 8 8 16 16
(C)-Conv2D 64 64 2 1 2 1

Parameters on Graph 100,226 198,001 397,442 790,945
Compression Ratio 4:1 2:1 2:1 1:1
Size on Disk [MB] 1.4 2.5 4.8 9.2

Table 5.1: Layers used in the four autoencoders and according parameter count on the
computational graph for complex-valued convolutions and real-valued convolutions re-
spectively. The spatial extents in X and Y per layer are kept constant across all networks,
varying the amount of filters. The compression is calculated by number comparing the
total input parameters to the bottleneck parameters.
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5.1.5.2 Architecture

The autoencoder architecture compresses the input data to a lower dimensional repre-
sentation, i.e. bottleneck (cf. Figure 5.3), with an encoder network and reconstruct the
input data from the bottleneck with a decoder network. It is common that the encoder
and decoder networks are formulated symmetrically, as we have done in this paper. We
reduce a 64x64 input 4 times by a factor of two spatially to encode a 4x4 encoding layer.
We define varying amounts of filters during the downsampling steps and in the code
layer to achieve varying amounts of compression shown in Table 5.1. The architecture
for the complex convolutional network is identical to the real network, except for re-
placing the real-valued 2D convolutions with complex-valued convolutions represented
by two feature maps instead of one. The layers for each network are shown in Table 5.1
with additional values, including learnable parameters counted on the computational
graph, compression ratio, and size on disk. In total four network architectures are pre-
sented, two real-valued and complex-valued networks each matched in the number of
feature maps, resulting in different amounts of parameters and compression ratio. The
parameters are counted on the computational graph compiled by Tensorflow.

The neural networks specifically use 2D convolutions with 3x3 kernels. We employ
batch normalization to regularize and speed up training (Ioffe et al., 2015). The down
and up sampling is achieved by MaxPooling and the UpSampling operation respectively.

Complex-valued neural networks contain two feature maps for every feature map
contained in a real-valued network. Conceptually, this is equivalent to a+ ib, with b = 0
for the real-valued network. The information in the complex complement for these two
feature maps is derived from the input data using the Hilbert transform. Following the
argument of deep learning, this input could be derived from a neural network directly
and should not provide an improvement to the networks reconstruction error. We define
a complex-valued network that has the same number of filters as the real-valued network
in both the ”small” and ”large” formulation in Table 5.1. This network effectively has
half the available feature maps for the real-valued seismic input, as the other half is
used for the complex-valued information. That means the smaller real-valued network
contains as many feature maps for the real-valued seismic as the large complex network,
the large real-valued network contains an additional feature map for every real-valued
input for the complex component.

5.1.5.3 Training

We train the networks with an Adam optimizer (Kingma et al., 2014) and a learning rate
of 10−3 without decay, for 100 epochs. The loss function is mean squared error, as the
seismic data contains values in the range of [-1,1]. All networks reach stable convergence
without overfitting, shown in Figure 5.5.
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Figure 5.5: Validation Loss (MSE) on 7 random seeds per network. (Real-valued loss
on real-valued seismic and combined complex-valued loss on complex-valued seismic, as
the network ”sees” it.)

5.1.5.4 Evaluation
We compare the complex autoencoders with the real-valued autoencoders, through the
reconstruction error on unseen test data on 7 individual realizations of the respective
four networks and qualitative analysis of reconstructed images. We focus on evaluating
the real-valued reconstruction of the seismic data for both networks.

5.1.6 Results
We trained four neural network autoencoders with seven random initializations for each
network, to allow for error bars on the estimates in Figure 5.5. The mean squared
error and the mean absolute error for each parameter configuration during training is
given in Table 5.2. There is a clear correspondence of the reconstruction error of the
autoencoder to the size of network. The real-valued networks outperform the complex-
valued networks in both the mean squared error and mean absolute error, however, we see
that a real-valued network needs around twice as many parameters as a complex-valued
network to attain the same reconstruction errors.

The seismic sections in Figure 5.6 show the unseen test seismic section. We perform
a closer inspection of the regions ”top” and ”bottom” to focus on geologically relevant
sections in the reconstruction process. The noisy segment without strong reflectors is a
good baseline to evaluate the noise reduction of the autoencoder and the behaviour of
the different networks on low amplitude data. Overall, all networks denoise the original
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Figure 5.6: Seismic Test Data with marked section for closer inspection. We chose the
”top” section for it’s faulted chaotic texture, ”bottom” for the faulted blocks, and ”silent”
for a noisy but geologically uninteresting section.

Network Compression Parameters MSE [×10−2] MAE [×10−2]

1) Csmall 4:1 100,226 0.484 ± 0.013 4.695 ± 0.058
2) Rsmall 2:1 198,001 0.436 ± 0.006 4.500 ± 0.028
3) Clarge 2:1 397,442 0.227 ± 0.003 3.247 ± 0.025
4) Rlarge 1:1 790,945 0.196 ± 0.002 3.050 ± 0.013

Table 5.2: Compression, parameters and errors for networks (lower is better). Losses on
network validation. The complex-valued networks achieve similar reconstruction errors
at twice the compression values.

seismic, with the lowest reconstruction errors being root-mean-squared (RMS) of 0.1187
and MAE of 0.0947 (cf. Table 5.3). Figure 5.7 shows the frequency-wavenumber (FK)
of the ground truth (5.7 (a)) and the large complex network reconstruction (5.7 (b)).
These show a decrease in the 0 - 60 Hz band for larger absolute wavenumbers.

Full Silent Top Bottom
Network RMS MAE RMS MAE RMS MAE RMS MAE
1) Csmall 0.1549 0.1145 0.1265 0.1010 0.2315 0.1759 0.1588 0.1200
2) Rsmall 0.1581 0.1153 0.1247 0.0994 0.2395 0.1810 0.1612 0.1205
3) Clarge 0.1508 0.1101 0.1187 0.0947 0.2301 0.1747 0.1514 0.1135
4) Rlarge 0.1469 0.1072 0.1214 0.0967 0.2222 0.1679 0.1459 0.1088

Table 5.3: RMS and MAE on real component of Data Patches.
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(a) Ground Truth (b) Large Complex Network

Figure 5.7: Evaluation on Silent Noise Patch in FK Domain. Noise reduction of frequen-
cies below 50 Hz apparent, while reconstruction does not introduce visible aliasing.

5.1.6.1 ”Top” seismic section
The ”top” segment contains strong reflections that are very faulted with strong reflectors.
Figure 5.8 shows the top segment and the reconstructions of the four networks. All
networks display various amounts of smoothing. The quantitative results show that
the complex networks perform very similar regardless of size. The large real-valued
network outperforms the complex networks by 2.5 % on RMS, while the small real-
valued network underperforms by 2.5 % on RMS. The panel in Figure 5.8c shows a
very smooth result. Despite the close score of the complex networks, it appears that
the complex-valued network restores more high-frequency content. We can also see less
smearing of discontinuities in the larger complex network, particularly visible in the
lower part (1.2 s) at 6000 m offset, which is smeared to appear like a diffraction in the
smaller network. The large real-valued network shows good reconstruction with minor
smearing with higher amplitude fidelity in areas like 1.1 s at 2000 m, however, some
of the steeply dipping artifacts are visible below the reflector packet between 0 m and
2000 m offset.

5.1.6.2 ”Bottom” seismic section
The data marke as ”bottom” in Figure 5.6 contains a faulted anticline and relatively
strong noise levels. The small complex network in Figure 5.9b reconstructs a denoised im-
age with good reconstruction of the visible discontinuities. Some leakage of the reflector
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(a) Ground Truth

(b) Small Complex Network top Patch (c) Small Real Network top Patch

(d) Large Complex Network top Patch (e) Large Real Network top Patch

Figure 5.8: Evaluation on top Noise Patch. Data is normalized between -1 and 1.
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starting at 1.5 s across discontinuities is visible. The real small network in Figure 5.9c
reconstructs a strongly smoothed image, with some ringing below the main reflector,
which is not visible in the other reconstructions. The dipping reflector at an offset of
16000 m is well reconstructed, however, it seems like the reconstruction introduced ring-
ing noise over the vertical image. The large real-valued network in Figure 5.9e performs
best quantitatively (cf. Table 5.3). The complex-valued large network in Figure 5.9d
does a fairly good job at reconstructing the image, similar to the large real-valued net-
work. However, the amplitude reconstruction of high-amplitude events particularly in
the main reflector around 1.5 s is showing.

5.1.6.3 Full seismic test data
It is evident, that the small real-valued network does not match the performance of the
smaller complex-valued network, even less so when compared to the large complex-valued
network. We therefore compare the large networks on the full seismic data.

Overall, both networks return a smoothed image. The findings for the strongly
faulted sections in the ”top” panel hold across the entire faulted area around 1.1 s in
Figure 5.11. The complex-valued network does a better job at reconstructing faults
and discontinuities. The real-valued network is better at reconstructing high-amplitude
regions that appear dimmer in the complex-valued region. The reconstruction of both
networks seems adequately close to the ground truth, with differences in the details.
Quantitatively, the real-valued network does the better reconstruction in Table 5.3 with
an improvement of 2.5 % over the large complex-valued network. The FK domain shows
a very similar reduction in noise in the sub 50 Hz band in Figure 5.10. All networks
introduce an increase of energy across all frequencies at wave-number k = 0 km−1. Ad-
ditionally, a dimming of the frequencies around k = 2.5 km−1 appears in all reconstruc-
tions, but is more prominent in the large complex-valued network. The ground truth
seismic contains some scattered energy in the high-frequency mid-wavenumber region,
visible as ”diagonal stripes”. These were attenuated in the complex-valued network in
Figure 5.10b, but are partially present in the real-valued reconstruction in Figure 5.10c.

5.1.7 Discussion
We evaluated the outputs of the real-valued and complex-valued neural networks. All
autoencoder outputs are blurred to different degrees and denoised. The denoising effect
of the seismic was most visible in the frequency band below 50 Hz. Additionally, some
scattered high-frequency energy was attenuated by the networks.

The largest differences of the outputs in real-valued and complex-valued networks can
be observed in discontinuous areas. Particularly, the faulted blocks in the top quarter
and in the bottom center of the seismic section show inconsistencies. The real-valued
network smooths over discontinuities and steep reflectors. Fault lines are imaged better
in the complex-valued network output.
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(a) Ground Truth

(b) Small Complex Network bottom Patch (c) Small Real Network bottom Patch

(d) Large Complex Network bottom Patch (e) Large Real Network bottom Patch

Figure 5.9: Evaluation on bottom Noise Patch. Data is normalized between -1 and 1.
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(a) Ground Truth (b) Large Complex Network (c) Large Real Network

Figure 5.10: FK domain of full seismic data.

In seismic data processing, including phase information stabilizes discontinuities and
disambiguates cycle-skipping in horizons. This could be observed in the network per-
formance and reconstruction. The increase in performance of the real-valued networks
was significant (7.0 % RMS), while the complex-valued networks already had an accept-
able performance on the smaller network architecture (2.6 % RMS). We provide the
complex-valued networks with a bias towards learning phase information, by providing
the Hilbert transformed analytical trace, while the real-valued network needs to learn
this information implicitly from the data itself. Considering, that during the training,
the complex network evaluates both the real-valued seismic, which we primarily care
about in addition to the complex-valued component, we can see how the losses in Fig-
ure 5.5 differ from the real-valued networks.

The largest network with 790,945 trainable parameters quantitatively performed the
best on the reconstruction of the data. However, analysis of the reconstructed seismic
shows, that while the high-amplitude regions are reconstructed to higher fidelity, discon-
tinuous sections may be smeared by the real-valued network. The real-valued network
that was matched to contain as many filters for the real-valued component of the seismic
as the large complex-valued network, did not perform well. Furthermore, the smaller
complex-valued network with 100,226 parameters that contains as many filter maps as
the real-valued network in total, and half the trainable parameters, outperformed the
smaller real-valued network across all test cases.

5.1.8 Conclusion
The inclusion of phase-information leads to a better representation of seismic data in
convolutional neural networks. Complex-valued networks perform consistently, where
real-valued networks have to learn phase-representations through implicit correlation,
which requires larger networks. We show that complex trace information in deep neural
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(a) Ground Truth

(b) Large Complex Network

(c) Large Real Network

Figure 5.11: Evaluation on full seismic data. Data is normalized between -1 and 1.
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networks improves the imaging of discontinuities as well as steep reflectors, particularly
in chaotic seismic textures that are smoothed by real-valued neural networks of the same
size and level of compression.

We show that convolutional neural networks can perform lossy compression on seis-
mic data, where the reconstruction error is dependent on both network architecture and
implementation details, like providing explicit phase information. During this compres-
sion, noise and scattered energy get attenuated. The real-valued network is prone to
introduce steeply dipping artifacts in the reconstruction and is matched by complex-
valued networks half the size with twice the amount of compression. This is particularly
interesting in the light of the complex complement of the data being derived from the
real-valued data through a Hilbert transform, which should have been possible to ap-
proximate by a neural network.

The stabilization of the reconstruction can be useful in other seismic applications.
While automatic seismic interpretation may benefit from the inclusion of information
on discontinuities, we see the main application to be lossy seismic compression. The
open source tool developed to make this research possible, enables further research and
development of complex-valued solutions to non-stationary physics problems that benefit
from explicit phase information.

This research also shows that a change as small as 2.5 % in RMS can change the
reconstruction from being acceptable to very smeared to a geoscientist. This touches on
the fact that better metrics to evaluate computer vision tasks in geoscience are necessary.
Additionally, these tasks have to be noise-robust and, while amplitude-preserving, be
robust against outliers. Moreover, more research in the frequency dimming of bands in
the network reconstruction is necessary.

Overall, the computational memory footprint of the complex convolution is higher
than real-valued convolutional neural networks comparing singular convolutional oper-
ations. A significant increase in depth and width of networks to obtain an acceptable
result in real-valued neural network to implicitly learn the phase information is neces-
sary. The complex-valued networks an 8th of the size already performs well, suggesting
that domains where a significant part pf the information is in the phase of signals, could
benefit from applying complex convolutional networks.
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5.2 Contributions of this Study
This chapter and Dramsch et al. (2019f) investigate the application of complex trace
analysis to Convolutional Neural Networks. It uses lossy compression to measure the
reconstruction error and therefore, the informational content in complex-valued NNs.
We were able to show that networks containing phase information in the complex com-
plement of data reduce the error as compared to real-valued networks. Moreover, the
code to reproduce the findings in this paper (Dramsch, 2019b), as well as, a standalone
Python library for complex-valued Convolutional Neural Networks in tensorflow has
been made available as Free Open Source Software (Dramsch et al., 2019c).
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CHAPTER 6
Machine Learning in 4D

Seismic Inversion
This chapter discusses a neural network application to approximate the pressure-saturation
inversion of 4D seismic data. It contains two workshop papers that discuss two different
aspects of the construction of the neural network architecture. Traditionally, 4D seismic
Quantitative Interpretation (QI) often relies on priors to reduce variance in the face
of uncertainty. The inversion problem in this chapter is a pressure-saturation inversion
from seismic amplitude difference maps in the Schiehallion field. The first paper presents
an ablation study of the components in the architecture. The second paper discusses
the neural network result and presents a comparison to a classical Bayesian inversion.

6.1 Data
The Schiehallion field is a stacked turbidite reservoir in the UK North Sea, which makes
it very heterogeneous and compartmentalized. The T31 sandstone reservoir has the
most lateral extent with the thickness ranging from 5 m to 30 m. The small thickness of
the reservoir layer results in the entire reservoir being contained in a single trough of a
seismic wavelet (≈ 1

2λ), which has historically lead to applications using a 2D map view
of the data. In order to make the results comparable, we treat the network as a 2D map
instead of a 3D problem.

The data available consists of simulation and field data with several years of collected
seismic data. The baseline acquisition is from 1996 with additional time steps acquired in
1999, 2000, 2002, 2004, 2006, 2008, and 2010. There are simulation results and measured
amplitude difference maps. The simulated seismic data is based on pore volumes from
previous pore volume inversions, pressure changes and saturation changes for water and
gas. The ground truth pressure and saturation changes are not available for validation
of the field data directly, which would be the ideal validation case.

Specifically, the seismic data consists of angle stacks in near, mid, and far. The
reflectivity of seismic data can be angle-dependent, especially in the presence of fluids
contained in the rock matrix. (Castagna et al., 1993). Angle stacks are constructed by
selecting subsets of the full dataset to average data within defined bands of incidence
angles. Commonly, angle stacks are constructed by stacking over the offset hence Ampli-
tude versus Offset (AVO). The process of stacking the data, despite being partial stack
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increases the Signal-to-Noise Ratio and is often necessary to obtain reliable results in
4D Quantitative Interpretation.

The simulation results are noise-free calculations with only a single simulation per
year available. The recorded field seismic contains significant levels of noise. The seismic
field data can therefore diverge from the theoretical prediction based on the pressure
and saturation data. These fluctuations are not smooth across individual cells of the
map, which can be seen in Figure 6.7.

The validation strategy in this problem setting is using one time step as a hold-out
set that is not used during the training of the neural network. The time step used was
recorded in the year 2004 and is presented in Figure 6.7. The remaining time steps are
used during the training. Results in the paper are presented on the hold-out data.

6.2 Machine Learning Model
A primary application of Machine Learning is building regression models. The data
available is not particularly abundant, which restricts the choice of model or training
strategy. Following a premise of simplicity, a dense neural network was implemented,
which treats each cell of a map independently. It is possible that a Convolutional Neural
Network increases the performance, but due to the nature of deep Convolutional Neural
Networks more training data needs to be generated.

In Dramsch et al. (2019e) we present a novel network structure that explicitly includes
Amplitude versus Offset (AVO) gradient calculation within the network as physical
knowledge, shown in Figure 6.6.

The network architecture was chosen to follow an encoder-decoder architecture as
a forcing function for information distillation. The encoder decreases in size with each
layer, gradually compressing the input data, while the decoder decompresses the data
to the designated output (Dony et al., 1995). Conventionally, the middle layer is called
”bottleneck” or ”code layer” as it contains the compressed representation of the input
data. Encoder-decoder architectures have found wide application in neural network
applications that necessitate data transformation to a different representation (Worrall
et al., 2017).

Additionally, the bottleneck layer is implemented as a variational encoding layer to
be less susceptible to noisy input. The specific implementation is based on variational
auto-encoders (Kingma et al., 2013). These replace the singular bottleneck layer with a
number of layers that represent the parameters in a parametric probability distribution,
most commonly the mean and variance of a Gaussian distribution N (µ, σ). The encoder
then informs the Gaussian distribution at the bottleneck and the decoder samples from
the distribution during training. At inference, these networks commonly return the
mean of the distribution. Neural networks are conventionally trained using stochastic
gradient descent, which is not well-behaved calculating the derivative of a random node.
Kingma et al. (2013) popularized the ”reparameterization trick”, which reformulates

z ∼ Pϕ(z|x), (6.1)
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with z being the bottleneck, P being the probability of the distribution ϕ to approximate,
and x being the data sample to

z = g(ϕ, x, ϵ) (6.2)

where g() is the functional representation of ϕ parameterized by µ and σ for a Gaussian
distribution, and ϵ being a random sample from N (0, 1) that is the source of randomness
in the bottleneck layer computing as z = µ+ σ · ϵ.

The pore volume is passed as-is to the network. The estimated pore volume helps
the network to decouple the rock matrix from the fluid effects, which is further explored
in Section 6.4. A schematic of the network is shown in Figure 6.6, which shows the
connections of the individual operations.

The network explicitly includes AVO gradient calculation in the network architec-
ture, considering it is physical knowledge we know will stabilize pressure and saturation
change separation. Including basic physics knowledge leads to the network learning resid-
ual information, essentially defining another forcing function for the networks learning
process. The AVO gradient can be calculated explicitly as input to the network. How-
ever, performing the AVO gradient calculation within the network enables programmatic
augmentation of the input data during training. This implies that instead of learning
one pre-computed AVO relation, we can perform data augmentation of the input data
and train on a significantly higher amount of correctly calculated AVO gradients. This
strategy can significantly improve the training strategy.

6.3 Training the Deep Neural Network for 4D
Seismic Inversion

The model training is carried out in multiple phases. The first phase solely trains on
un-augmented simulation data to determine an ideal network structure. The second
phase trains on the fixed architecture with data augmentation to transfer the network
to noisy field data. The network is optimized on standard Mean Squared Error while
monitoring the R2-score.

The initial phase was carried out on simulation data with the data split into one part
for training and a separate data set for validation. The seismic data from 2004 was held
out as a test set. Neural Architecture Search was applied to the network to determine
depth and width of the architecture, using a Tree of Parzen Estimator (TPE) hyper-
parameter search (Bergstra et al., 2015). This ensures an architecture in a controlled
test environment on simulation data that is optimized for the complexity of the data.

In the second phase, to transfer the network to field data, the input of the network
was combined with additive Gaussian noise (Bishop, 1995) to train the network for noisy
field data input. The noise level was estimated in a manual process. Therefore, including
the AVO calculation within the network forces the network to learn noisy AVO gradients
that correspond to the augmented input. This process reduces the R2-Score and Mean
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Squared Error, which is an expected effect of noisy regression data (Hastie et al., 2009).
Nevertheless, this produces consistent results on field data upon visual inspection.

The paper “Including Physics in Deep Learning – An Example from 4D Seismic
Pressure Saturation Inversion” in Section 6.4 provides an ablation study, where parts
of the neural network architecture are systematically switched off. Ablation studies are
commonly used to explore and evaluate the effect of the individual components on the
regression result. The paper “Deep Learning Application for 4D Pressure Saturation
Inversion Compared to Bayesian Inversion on North Sea Data” in Section 6.5 shows the
results of the deep neural network compared to a Bayesian inversion.
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6.4 Workshop Paper: Including Physics in
Deep Learning – An example from 4D
seismic pressure saturation inversion

Abstract: In this work we present a deep neural network inversion on map-based
4D seismic data for pressure and saturation. We present a novel neural network archi-
tecture that trains on synthetic data and provides insights into observed field seismic.
The network explicitly includes AVO gradient calculation within the network as phys-
ical knowledge to stabilize pressure and saturation changes separation. We apply the
method to Schiehallion field data and go on to compare the results to Bayesian inver-
sion results. Despite not using convolutional neural networks for spatial information,
we produce maps with good signal to noise ratio and coherency.

J. S. Dramsch, G. Corte, H. Amini, M. Lüthje, and C. MacBeth (2019d). “Deep
Learning Application for 4D Pressure Saturation Inversion Compared to Bayesian
Inversion on North Sea Data”. In: Second EAGE Workshop Practical Reservoir Mon-
itoring 2019. Published, Chapter 6. EAGE. doi: 10.3997/2214-4609.201900028

6.4.1 Introduction
Physics in machine learning often relies on transformations of data to beneficial domains
and simulating additional data. Karpatne et al. (2017) show a physics-guided approach
to model lake temperatures with neural networks. Schütt et al. (2017b) use deep neural
networks to model molecule energies and Oliveira et al. (2017) employ a special archi-
tecture to capture scatter patterns in high-energy physics. When building deep learning
pipelines, we can make informed choices in data modeling, but also build neural net-
works to maximize information gain on the available data. Ulyanov et al. (2018) has
shown that the network architecture itself can be used as prior in machine learning.
These approaches translate well to geoscience, where strong priors are often necessary
to inform decisions.

Deep learning has revolutionized machine learning by replacing the feature generation
and augmentation step by learned internal representations of features that maximize
information gain. On image data analysis of these neural network filters have shown
close relations to edge filters and color separators (Grün et al., 2016). Dramsch et al.
(2018d) have shown that these filters translate well to seismic data. However, classic
feed-forward neural networks do not have the benefit of learning filters. However, these
neural networks benefit from recent improvements for regularization (Ioffe et al., 2015),
non-saturating and non-vanishing gradients (He et al., 2015), and training on GPUs.

Neural networks for inversion of seismic data have a long history (Roeth et al., 1994).
In Dramsch et al., 2019a we show the application of a deep multi-layer perceptron for

https://doi.org/10.3997/2214-4609.201900028
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map-based 4D seismic pressure saturation inversion. In this work we show the informa-
tion gain of feed-forward multi-layer perceptron neural networks by including an explicit
calculation of the AVO gradient within the network architecture. It’s exemplary for in-
cluding domain knowledge as a prior in machine learning.

6.4.2 Method
We build a deep feed-forward network to invert seismic amplitude maps for pressure and
saturation changes. We use the high-level Python framework keras with a tensorflow
backend. The neural network was trained on synthetic data, to subsequently predict
field data. The network takes the seismic input samplewise with near, mid, and far
stacks, and pore volume. We inject 20% Gaussian noise to model the noisier field data
directly after the input layer. This is fed to a custom layer that calculates the PP AVO
gradient between far-mid, mid-near, and far-near. The main components are as follows:

6.4.2.1 Gaussian noise injection
The synthetic model is noise-free. While we get good results on the training data and
the modelled test data, the network does not transfer well to noisy field data. Although
the 4D NRMS is very low in the data set, the sample-wise fluctuations in the field
seismic differ significantly from the synthetic data. We apply additive Gaussian noise
with σ = .02 to the seismic inputs separately to simulate independent fluctuations of
the seismic maps. This significantly decreases the training and validation performance
on noise free synthetic data. On field data, however, this enables good transfer of the
neural network.

1 noisy_input = GaussianNoise(0.02)(input_data)

6.4.2.2 Explicit AVO gradient calculation
The Schiehallion field is a good example of imbalanced learning. We have many sam-
ples of pressure changes ∆P , a good selection of water saturation changes ∆Sw, and
very few gas saturation changes ∆Sg. Yet, the changes in gas saturation ∆Sg produce
the strongest changes in seismic P wave amplitudes. Statistically, these can easily be
regarded as outliers, and therefore, possibly disregarded by the neural network. From
decades of seismic analysis, we know that the AVO gradient is very good for pressure
saturation separation. We implement an explicit calculation of AVO gradients in the
network.

G = AΘ1 − AΘ0

xΘ1 − xΘ0

, (6.3)

where G is the PP AVO gradient, A is the seismic P wave amplitude, x is the offset, and
Θ is the angle.



6.4 Workshop Paper: Including Physics in Deep Learning – An example from 4D seismic
pressure saturation inversion 99

1 mid_near = Lambda(
2 lambda inputs: (inputs[0] - inputs[1]) / (10)
3 )([noisy_mid , noisy_near])
4

5 far_mid = Lambda(
6 lambda inputs: (inputs[0] - inputs[1]) / (10)
7 )([noisy_far , noisy_mid])
8

9 far_near = Lambda(
10 lambda inputs: (inputs[0] - inputs[1]) / (20)
11 )([noisy_far , noisy_near])

6.4.2.3 Encoder-decoder architecture
Subsequently, the four input maps and the three gradient maps are concatenated and
fed to an encoder architecture that condenses the information to an embedding layer z.
This layer learns a collection of Gaussian distributions to represent the noisy input data
The decoder samples this variational embedding layer to calculate the pressure change
∆P , change in water saturation ∆Sw, and gas saturation ∆Sg.

The full architecture is of the encoder-decoder class. The encoder reduces the number
of parameters with each subsequent layer. This forces the network to learn a lossy
compression of the input data as z-vector. The decoder increases the number of nodes
per layer toward the output. The network therefore learns to correlate the low resolution
representation with the desired output.

Figure 6.1: Full Architecture from Dramsch et al. (2019a).
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6.4.2.4 Variational Z Vector
The inversion of noisy input benefits from a variational representation of compressed
z-vector. The networks learns Gaussian distributions in the embedding layer. There-
fore, we have to apply the reparametrization trick outlined in Kingma et al. (2013) to
circumvent the sampling process cannot be learned by gradient descent. We use the
implementation in Chollet et al. (2015b) for variational autoencoders.

6.4.3 Results

Figure 6.2: Schiehallion 2004 Timestep Seismic data, pore volume and sim2seis results.

In figure 6.2 we show the 2004 time step of the Schiehallion 4D. Figure 6.3 contains
the inversion result using the variational encoder decoder architecture. Some coherency
in the maps can be seen, but each map is very noisy and the gas saturation map con-
tains many data points that indicate gas desaturation, which cannot be confirmed by
production data.

Figure 6.3: Variational Encoder Decoder Architecture Inversion

When we add the gradient, we can clean up some of the misfit in the gas saturation
maps ∆Sg. Particularly, the event with the strongest softening in the amplitude maps, is
partially reassigned to the pressure map ∆P . However, the inversion process is still very
prone to noise. In figure 6.5, we show the inversion results of a AVO-gradient neural
network with a noise injection at training of σ = .02. The inversion maps are very
coherent. Noise injection without gradient calculation does not give adequate results.
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Figure 6.4: AVO-Gradient Variational Encoder Decoder Architecture Inversion

Figure 6.5: Noiseinjected AVO-Gradient Variational Encoder Decoder Architecture In-
version

6.4.4 Conclusions
We have shown a neural network architecture that incorporates physical domain knowl-
edge to enable transfer from synthetic to field data. The final inversion result has very
good coherency, despite the network not having any spatial context. While further in-
vestigation is necessary, this indicates that useful information has been learned. This is
one example, where bias can be intentionally introduced into the network architecture
to include physics into machine learning.
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6.5 Workshop Paper: Deep Learning
Application for 4D Pressure Saturation
Inversion Compared to Bayesian Inversion
on North Sea Data

Abstract: Geoscience data often have to rely on strong priors in the face of un-
certainty. Additionally, we often try to detect or model anomalous sparse data that
can appear as an outlier in machine learning models. These are classic examples of
imbalanced learning. Approaching these problems can benefit from including prior
information from physics models or transforming data to a beneficial domain. We
show an example of including physical information in the architecture of a neural
network as prior information. We go on to present noise injection at training time to
successfully transfer the network from synthetic data to field data.

J. S. Dramsch, G. Corte, H. Amini, C. MacBeth, and M. Lüthje (2019e). “Includ-
ing Physics in Deep Learning – An Example from 4D Seismic Pressure Saturation
Inversion”. In: 81st EAGE Conference and Exhibition 2019 Workshop Programme.
Published, Chapter 6. EAGE. doi: 10.3997/2214-4609.201901967. url: https:
//doi.org/10.3997/2214-4609.201901967

6.5.1 Introduction
Estimating reservoir property change during a period of production from 4D seismic
data has been a concentrated challenge and ambition for geoscientists in the oil and gas
industry. These estimates can contribute to a better history matching of the reservoir
simulation and for more comprehensive reservoir monitoring.

With the advance of machine learning techniques on all fronts in the geosciences
we can address what roles machine learning can take in the established pressure and
saturation inversion workflows and what other new workflows can be constructed using
this tool. Machine learning is such a broad concept that it can be incorporated at
different levels on all the current well established workflows to diminish their weaknesses,
bringing more value to the pressure and saturation estimations from seismic inversion.
Not only that, with this tool we can create completely new workflows that we are only
beginning to grasp.

Here we will present results for two separate methodologies of seismic inversion to
changes in pressure and saturation. The first method is a well established model-based
Bayesian inversion method using a calibrated petro-elastic model and convolution work-
flow as the forward seismic modeling operator. In the second method we use a deep
neural network to model the inversion process, we use synthetic seismic data to train

https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201901967
https://doi.org/10.3997/2214-4609.201901967
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the network, then apply the inversion to observed data. The methods are applied to the
same field data giving a nice platform to compare the neural network inversion results
to a more conventional approach.

6.5.2 Schiehallion Data
The inversions are applied to maps of Schiehallion’s upper T31 sandstone. It is a fairly
thin reservoir (5-30m), which is well defined in the seismic data by one single trough.
For this reason, a map-based approach is appropriate. Schiehallion is a highly compart-
mentalized field with initial pressure close to bubble point pressure. Production in this
complex structure led to areas with strong pressurization due to water injection into
closed compartments, while other areas lack the pressure support and experience gas
release due to pressure depletion. We face the challenge of inverting 4D seismic data to
changes in pressure, water saturation and gas saturation (∆P, ∆Sw and ∆Sg), so the
methods need to deal properly with the non-linearities due to each of these effects. The
seismic data analysed is a set of eight vintages (from 1996 to 2010). These were repro-
cessed by CGG in 2014, following a 4D driven multi-vintage workflow. The processing
workflow was carefully optimized to maintain 4D AVO amplitudes intact. Synthetic
feasibility studies showed that the 4D AVO attributes are in line with the theoretical
expectations. The seismic data used for inversion is the 4D difference of the sum of
negative amplitudes (∆SNA) map attribute, extracted from three angle-stacks, along
the reservoir time window (see figure 6.7).

6.5.3 Method 1 - Model-based Bayesian inversion
The Bayesian invesion workflow is explained in detail in Corte et al. (submitted 2019).
Essentially the workflow uses a petro-elastic model calibrated to the seismic data by
Amini (2018) and a convolutional step to model the seismic data. The ∆SNA attribute
is then extracted from the synthetic seismic and compared to the real seismic ∆SNA
map. Since this is a map-based inversion, all realizations are sampled in map form and
then go through a conversion into the vertical reservoir simulation grid in order to run
the forward modelling process. We use a monte carlo sampling algorithm to generate
thousands of realizations of the full map and from these extract best estimations and
uncertainties. This inversion is constructed in a Bayesian model-based form, with the
objective of bringing together information from the history matched reservoir simulation
and seismic data. Reservoir simulation results for ∆P, ∆Sw and ∆Sg are incorporated as
prior knowledge, to settle ambiguities and lack of seismic information. Where the seismic
data lacks information about a certain property the method will bring this information
from the simulation model. The inversion results will deviate from the simulation in areas
where the seismic data contains enough consistent information to indicate an update is
necessary.
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6.5.4 Method 2 - Neural network inversion
We use a deep neural network to model the inversion process, based on the synthetic
convolution seismic data. Although convolutional neural networks are considered the
state of the art in spatially correlated data, we show that a sample-wise feed forward
neural network trained on noise-free convolutional seismic can invert observed seismic
data. We aim to build a regression model that can invert physical seismic angle stack
data to pressure and saturation data.

Distinguishing pressure and saturation changes in 4D seismic data is a hard to solve
problem. In neural networks, this is no different. The variation of data showing different
pressure and saturation change scenarios is sparse, which complicates training and may
possibly be disregarded as noise. This increases the need for training data immensely.
However, we can include prior physical insights into neural networks to reduce the cost
of training and uncertainty. As neural networks are at its basis very large mathematical
functions, we can explicitly calculate the P-wave AVO gradient within the network to use
as additional information source, without the need of feeding it into the network as input
data. This has the added benefit of the network learning on noisy gradients. The design
choice for the neural networks can be arbitrary, however, encoder-decoder networks
have proven to force neural networks to find meaningful relationships within the data
and reduce to these in the bottleneck or embedding layer. For the final architecture we
used hyperopt (Bergstra et al., 2013) and keras (Chollet et al., 2015b). This allows us
to use a Tree of Parzen (TPE) estimator for hyperparameter estimation. The estimator
models P (x|y) and P (y), where y the quality of fit and x is the hyperparameter set
drawn from a non-parametric density (Bergstra et al., 2011).

Figure 6.6: Architecture for sample-based seismic inversion with explicit gradient calcu-
lation.

The architecture is shown in figure 6.6. Inputs are Near, Mid, Far seismic, and Pore
volume. These Input Layers are passed on to calculate the mid-near, far-mid, and far-
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near gradients. These four inputs and three gradients are concatenated and fed to the
encoder. z_mean and z_log_var build the variational embedding with z_Lambda being
the sampler fed to the decoder network. The decoder splits into three output layers ∆P,
∆Sw, and ∆Sg.

The network is trained using sim2seis results calculated for the seven time-steps
at seismic monitor acquisition times, it is then used to invert each seismic monitor
individually. The inversion results for the synthetic data gave a consistent R2-score
of over 0.6 for all simultaneous inversion targets ∆P, ∆Sw and ∆Sg with an encoder-
decoder architecture and a deterministic embedding layer. While we kept the main
architecture constant, we replaced the embedding layer with a variational formulation
to allow for noise in the input to output mapping added noise injection to the input
layer, to apply Gaussian Noise during the training phase. This significantly improved
the inference on observed seismic data. The total training time for the network was 3
hours on a K5200 GPU, prediction speed takes 5.11 s± 22.1 ms.

6.5.5 Schiehallion Field Data Example
The field data differs significantly from the synthetic data in that it is noisier, assuming
the same ground truth. This is a true challenge for a sample-wise process to produce
consistent results. We have trained the network with Gaussian noise on the input data
with zero mean and a standard deviation of σ = .02, therefore, approximately 95 % of
the noise may distort up to a maximum 40 % of the clean signal.

Figure 6.7 shows the observed 4D seismic maps (∆SNA) for the 2004 monitor ac-
quisition using the 1996 acquisition as baseline. Figure 6.8 shows, in the first row, the
simulation model results (used in the Bayesian method as prior information), in the
second row, the inversion results for the Bayesian method, and in the third row, the
inversion results for the neural network method.

Figure 6.7: Schiehallion 2004 Timestep Seismic data, pore volume and sim2seis results.

From figure 6.8 we can see clearly the influence of the prior simulation model in
the Bayesian results. The neural network does not use a prior, so the results are not
influenced by the simulation model and can be seen as a direct interpretation of the
seismic data. Comparing both we can see what bits of information the Bayesian method
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is bringing from the prior. The seismic data is most sensitive to gas saturation changes,
so the Bayesian method is able to capture this consistent information from seismic data
and deviate ∆Sg results from the initial prior. The results for gas saturation are the
most in agreement in both methods precisely because all this information is coming
from the seismic data. We see some leakage of hardening effects into the ∆Sg results
in method 2 due to the fact that we cannot set constraints to that inversion process.
Since there is no initial gas saturation in those areas the saturation change cannot be
negative, these comprehensive constraints are imbedded into the Bayesian workflow but
not in the neural network.

Figure 6.8: Schiehallion 2004 Timestep Bayesian Inversion and Neural Inversion

Water saturation has a distinctive hardening effect on seismic data, but in this map it
is highly obscured by stronger overlying softening effects due to pressure increase and gas
breakout. The neural network interprets all the hardening anomalies correctly as water
saturation increase, while controlling for noise in areas of softening amplitudes. In those
areas the seismic data does not contain useful information on the water saturation so
the Bayesian result relies on a strong prior to compensate. All of the water saturation
inverted by method 2 is in agreement with method 1, but since method 1 has this
additional information from the prior, the map seems more coherent.
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The pressure effect on seismic is highly non-linear. While high increases in pressure
show a very strong softening effect, milder pressure variations (up to ±7 MPa) have very
little influence on the seismic data and are easily obscured by overlying effects. For this
reason, the neural network pressure inversion in regions of mild change is low and often
correlated with saturation. The Bayesian inversion benefits from the prior to fill those
pressure values. This method does deviate from the prior in areas of strong softening
signals due to pressure increase, and those areas are also correctly interpreted by the
neural network inversion.

When we relax the prior of the Bayesian inversion, these results are very noisy in
the pressure and water saturation estimates. In these areas the neural network inversion
is robust to noise. During the neural network training the pore volume has shown to
be important in guiding the inversion from the seismic data. Adding pore volume data
adds a structural component to the neural inversion process, which improves the overall
results from the sample-based method significantly.

6.5.6 Conclusions
This work presents Deep Neural Inversion of 4D seismic data. We compare the results
with a Bayesian Inversion approach. We show that Deep Neural Networks can model seis-
mic inversion trained on synthetic data. Explicit calculation of the P-wave AVO gradient
within the network stabilizes the pressure-saturation separation within the network and
Noise Injection enables the transfer to unseen seismic field data. Neural networks can
be an important tool to investigate nascent information in 4D seismic data to improve
inversion workflows and reduce uncertainty in seismic analysis.

The Neural Inversion can be used as a valuable tool to explore purely data-based
inversion results in the presence of noise. It is able to translate the ambiguous seismic
amplitudes into much more easily interpreted property maps. The value of the Bayesian
inversion results presented is in combining all knowledge about the reservoir to create a
general view of the reservoir dynamics. These results show the current understanding
of reservoir dynamics updated by imprinting seismic information on top of the history
matched simulation results.
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6.6 Discussion of 4D Inversion
The workshop paper Dramsch et al. (2019d) contains the Neural Network results com-
pared to the simulation and Bayesian inversion results, shown in Figure 6.8. This net-
work does not calculate the inversion solution; it merely approximates the inverse prob-
lem. These initial results on limited training data show that a Neural Network can
estimate pressure saturation information from field data, after training on simulation
data.

The results presented in Figure 6.8 contain three indicators that the network learned
a regression for the Schiehallion field. The network returns the overall trend in increase
and decrease of pressure and saturation correctly. Additionally, the range of output
values for the network is unconstrained, but the network calculates values in the ranges
that are expected from the simulation and Bayesian inversion results. However, and more
interestingly, the networks do not contain spatial information, being a feed-forward DNN
not a CNN, yet returns continuous albeit noisy outputs when re-assembled into maps.

While the overall result is promising, regions of strong gas saturation changes present
a problem. This could be due to problems in the modelling, as well as the fact, that
they generate strong amplitude differences and are far in between, essentially behaving
like outliers.

6.7 Contribution of this study
This study introduced a Deep Neural Network to approximate a 4D Quantitative Inter-
pretation pressure-saturation inversion problem with a regression model. The contribu-
tion of this study is threefold in that it approximated the pressure-saturation inversion,
included physical information in the network, and trained on simulation data and trans-
ferred to field data. The work included in this thesis are two workshop papers (Dramsch
et al., 2019e; Dramsch et al., 2019d); however, a journal paper (Côrte et al., 2020) and
conference paper (Corte et al., 2020) have been published, resulting directly from this
work.



CHAPTER 7
3D Time Warping for 4D

Data
This chapter consists of the submitted journal paper “Deep Unsupervised 4D Seismic 3D
Time-Shift Estimation with Convolutional Neural Networks” (Dramsch et al., 2019b).
This paper presents a novel 3D warping technique for the estimation of 4D seismic
time-shifts. The algorithm is unsupervised and provides 3D time shifts with uncertainty
measures. The unsupervised nature of this algorithm avoids biasing the Machine Learn-
ing model with ground truth data from existing time-shift extraction algorithms.

4D seismic time shift extraction is often performed in 1D due to time constraints
and often sub-par performance of 3D algorithms (Hatchell et al., 2005b). In geologically
complex systems and pre-stack time-shifts, these simple approaches often break down
and obtaining 3D time-shifts is beneficial. This chapter explores and summarizes con-
ventional 3D warping methods and machine learning approaches. The paper Dramsch
et al. (2019b) in this chapter adapts the medical Voxelmorph algorithm to match 4D
seismic data volumes in 3D.

Common 1D approaches include local 1D cross-correlation, dynamic time warping
(Hale, 2013c), optical flow methods and methods based on Taylor expansion (Zabihi
Naeini et al., 2009). 3D methods include Dynamic Image Warping (DIW) (Hale, 2013a),
which expands dynamic time warping to two and three dimensions respectively. DIW
is, however, at its core a depth-wise method that then gets smoothed across trace-wise
matches. 3D local cross-correlation defines a multi-dimensional cross-correlation in a
fixed Gaussian window to make the problem computationally feasible. The method
requires processing of the seismic images to perform reasonably, usually smoothing
and spectral whitening. Rickett et al. (2007a) introduce a non-linear inversion-based
time-shift extraction in 3D. Cherrett et al. (2011) further develop a geostatistical inver-
sion combining data constraints with geostatistical information in a Bayesian inversion
scheme.

Zitova et al. (2003) review the rich history of medical registration methods that par-
tially overlap with 4D seismic methods. These methods include affine transformations,
piece-wise linear transformations (Goshtasby, 1988), radial basis function-based methods
(Zitova et al., 2003), and elastic deformations (Bajcsy et al., 1989). The method most
relevant to this paper is Large Deformation Diffeomorphic Metric Mapping (LDDMM)
(Beg et al., 2005), which has not found application in 4D seismic, due to being computa-
tionally expensive. The method finds a combination of diffeomorphisms, which will be
introduced in Section 7.1, through the deformation field of two images. LDDMM then
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finds the shortest path of these diffeomorphisms iteratively.

7.1 Diffeomorphisms
In simple terms a diffeomorphism is a smooth transformation of an image, i.e. no dis-
continuities or holes are introduced. In the following we will constrain ourselves to R3

for brevity’s sake. We define two images B,M and assume B is a random deformation
of M , then B ∈ B := {B = M ◦φ, φ ∈ DiffV }, with φ being a diffeomorphic flow from
DiffV . Diffeomorphisms in R3 are a group of bijective, smooth transformations of local
areas in dense images generated as smooth flows ϕt, t ∈ [0, 1], with φ := ϕ1, ϕ0 := id
(Beg et al., 2005). They satisfy the Lagrangian and Eulerian specification of the flow
field for diffeomorphisms associated with the Ordinary Differential Equation (ODE)

dϕt
dt

= vt ◦ ϕt, ϕ0 = id, t ∈ [0, 1], (7.1)

with ϕ being the smooth flow, where ϕ̇t ∈ R3 are the Lagrangian vector fields and v the
Euclidean velocities of the system. ϕ0 is determined to be the identity transformation.
Beg et al. (2005) approached this problem as a variational problem, whereas Miller et
al. (2015) reformulated as a Hamiltonian optimal control problem on the variational
objective. The variational objective for densely matched images B and M as is the case
in seismic data following can then be defined as minimizing the Cost C of a given vector
field v

min
v
C(v) : = 1

2

∫ 1

0
(Avt|vt)dt+ 1

2σ2∥B ◦ ϕ
−1
1 −M∥2 (7.2)

for images B, M: R3 → R+, ϕ · B : = B ◦ ϕ−1. Here A is the one-to-one matrix linear
differential operator such that A : V → V ∗, which enforces the smoothness constraint by
modelling the norm (V, ∥ · ∥V ). σ represents vector elements in the dual space V ∗, which
in this case are generalized functions which represent the conjugate momentum repre-
sentations of the system. They act on smooth vector functions f ∈ V further following
Miller et al. (2015) to provide energy with (σ|f) : =

∫
X f⃗(x) · σ⃗(dx). It follows that Av

can be interpreted as the Eulerian momentum. Allowing Av to be singular implies that
coordinates can be displaced homogeneously by a singular momentum. Then (7.2) can
be interpreted as minimizing two objectives, namely the action integral of kinetic energy
and the endpoint matching. This is equivalent to finding the aforementioned shortest
path of diffeomorphisms, while matching the resulting image as closely as possible.

7.2 Image Matching Algorithms
Machine learning-based methods within computer vision are mostly applied in image-
and video-processing applications. Supervised methods largely work off the assumptions
in Optical Flow (Dosovitskiy et al., 2015; Ranjan et al., 2017). FlowNet (Dosovitskiy
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et al., 2015) implements an Encoder-Decoder CNN architecture. It has reached wide
reception in the field, and several modifications were implemented; namely, FlowNet 2.0
(Ilg et al., 2017) improving accuracy, and LiteFlowNet (Hui et al., 2018) reducing the
computational cost. SpyNet Ranjan et al., 2017 and PWC-Net (Sun et al., 2018) imple-
ment stacked coarse-to-fine networks for residual flow correction. PatchBatch (Gadot
et al., 2016) and deep discrete flow (Güney et al., 2016) implement Siamese Networks
(Chopra et al., 2005) to estimate the optical flow. Alternatively, DeepFlow (Weinza-
epfel et al., 2013) attempts to extract large displacements optical flow using pyramids
of Scale-Invariant Feature Transform (SIFT) features. These methods are prone to the
same problems classic optical flow algorithms exhibit. Moreover, supervised methods ne-
cessitate ground truth time shifts. This leads to two problems; Either the model needs
to be trained on synthetic data, where shifts are known and transfer model to field data,
or we need to train the network on time shifts extracted by a different method. The
implication of training a deep neural network on data extracted by a different method
trains the network to include all assumptions the extraction methods make. Training
on time shifts extracted by a 1D method would, therefore bias the network to return
pseudo-trace-wise predictions.

Unsupervised methods include different approaches to the problem of image- and
volume-matching. Meister et al. (2018) modifies the FlowNet architecture to an unsu-
pervised optical flow estimator with bidirectional census loss called UnFlow. UnFlow
makes several changes to the original optical flow formulation, which relax the illu-
mination constraint (Stein, 2004). Bansal et al. (2018) implements a cycle-consistent
generative adversarial network (Cycle-GAN) to interpolate video frames. This method
is potentially promising but falls short due to training data constraints in seismic data.
Video data contains at least 24 frames per second of video, which provides training data.
One second of video, therefore, already contains more time steps than the best-covered
field in 4D seismic data. Voxelmorph (Balakrishnan et al., 2019) implements a U-net
(Ronneberger et al., 2015b) within an architecture that extracts a static velocity field,
which is integrated to obtain a diffeomorphic warp field and performs a 3D interpolation
to match the fields and trains unsupervised. This method significantly reduces the un-
derlying assumptions necessary to make the network perform well on seismic data. The
Voxelmorph algorithm is based on the diffeomorphic assumption, which constrains the
solution space of the mapping. The main benefit of applying the diffeomorphic mapping
to geoscience data comes in the fact that all diffeomorphisms are homeomorphic. The
homeomorphic assumption transfers well to the geological reality that the mathematical
topology stays constant, resulting in reflectors neither crossing nor generating loops.

The paper in (Dramsch et al., 2019b) applies the Voxelmorph architecture in Dalca
et al. (2018b) to 4D seismic data. I make the network work on seismic data and train
it on the Dan 1988-2005 seismic volumes in 3D. Seismic data is significantly larger than
most brain scan data, which necessitates patch-based training of the network. I compare
the obtained warp field to the best match, I could obtain using classic methods on the
available data. The DIW match is sufficiently similar to the Voxelmorph warping field
to warrant further investigation. The Voxelmorph architecture implements a subsam-
pled flow field, which I replaced by a full U-Net that provides full-scale 3D flow fields
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with uncertainties. The paper includes an investigation of the differences between the
subsampled and full-scale flow fields. Moreover, I validate the unsupervised model on
the same field with different seismic data, collected at different times, with differing
seismic acquisition equipment, including different azimuths. Moreover, I test the model
on a seismic data set from a different field, with different geology, acquisition, and year.
Finally, the Machine Learning approach is compared to a time-shift field obtained with
Dynamic Image Warping.

7.3 Dynamic Time and Image Warping
The paper in Dramsch et al. (2019b) uses Dynamic Time Warping (DTW) but does not
expand on the method; hence an introduction to the algorithm is presented here. DTW
is a signal processing tool for time series with the capability to match arbitrary time-
series. Within geophysics it is applicable to 4D time shifts, seismic-well ties, well-to-well
ties, and seismic pre- and post-stack migration (Hale, 2013b; Luo et al., 2014). Dynamic
Time Warping itself is a dynamic programming problem described in Algorithm 1.

(a) Itakura (1975) Parallelogram (b) Sakoe et al. (1978) Disc

Figure 7.1: Minimum path for constraint masks for cumulative cost in DTW. Images
show the optimum path for different loss functions, including L1, L2, and the Huber
loss.

The DTW algorithm, represented in Algorithm 1, relies on calculating a distance
matrix sample-wise between two traces a and b. Commonly, the L1 norm is used to
calculate the distance with |b − a|. Alternatively, the euclidean distance or L2 norm
can be used, which modifies the calculation to (b− a)2. The difference between L1 and
L2 is significant in the sense that the L1 norm is not differentiable or convex; however,
it scales linearly for outliers. The L2 norm converges fast close to zero; however, the
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error ”explodes” for outliers. The Huber loss from convex optimization combines the
advantages of the L1 norm and L2 norm

Lδ(a, b) =


1
2(b− a)2 for |b− a| ≤ δ,

δ(|b− a| − 1
2δ), otherwise.

(7.3)

which is convex for small values, scales linearly for outliers and is differentiable for
all values of R, with δ being a scaling factor.

procedure DTW(a, b)
Given: Trace a and Trace b of lengths n.
function Calculate distance matrix D(a, b)

D ← dist(a, b)
end function
function Calculate Cumulative Cost C(D)

C[0, 0]← 0
for i = 1 to n do ▷ Populate Edge

C[0, i]← D[0, i] + C[0, i− 1]
C[i, 0]← D[i, 0] + C[i− 1, 0]

end for
for i = 1 to n do ▷ Fill Cumulative Cost Matrix

for j = 1 to n do
Cmin ←min{C[i, j − 1], C[i− 1, j − 1], C[i− 1, j]}
C[i, j]← D[i, j] + Cmin

end for
end for

end function
function Backtrack minimum cost path P (C)

P ← C[n, n]
while i > 0|j > 0 do

i, j ← index{P [last]}
Cmin ←min{C[i, j − 1], C[i− 1, j − 1], C[i− 1, j]}
P.append← index{Cmin}

end while
end function
return P

end procedure

Algorithm 1: Dynamic Time Warping algorithm consists of calculating the element-wise
distance matrix, cumulative cost and then find the optimal path in the cumulative cost
matrix

Additionally, the search space on the cumulative distance matrix can be constrained
to both increase performance and avoid non-optimal solutions. The different global
constraint strategies are presented in Figure 7.1. The Itakura parallelogram (Itakura,
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1975) in Figure 7.1a describes a parallelogram that has the largest width across the
diagonal of the matrix, providing the highest degree of flexibility for the DTW algorithm
in the centre parts of the seismic traces. The Sakoe-Chiba disc (Sakoe et al., 1978) follows
a different strategy, which provides a constant maximum warp path. This strategy in
Figure 7.1b introduces a global maximum time shift. Other constraints on the warp
path in Dynamic Time Warping are local rate changes that limit the local changes, also
called step patterns (Sakoe et al., 1978; Giorgino et al., 2009).

Dynamic Image Warping (DIW) is the extension of DTW to 2D and 3D datasets.
Hale (2013b) introduced DIW for seismic data by applying the DTW algorithm in z-
direction along the time-series and smoothing adjacent time-shifts to obtain consistent
results. This process can be done iteratively with progressively smaller smoothing win-
dows to obtain x-y consistent DIW results. It is important to note that DIW does not
increase the computational cost of the DTW algorithm itself. Contrary to the intuition,
the distance matrixes and cumulative cost presented in the are calculated in the same
way resulting in a 2D cost matrix for each pair of 1D time series. However, the amount
of comparisons of traces increases in 2D and 3D, scaling up the computational cost.
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7.4 Journal Paper: Deep Unsupervised 4D
Seismic 3D Time-Shift Estimation with
Convolutional Neural Networks

Abstract: We present a novel 3D warping technique for the estimation of 4D seis-
mic time-shift. This unsupervised method provides a diffeomorphic 3D time shift
field that includes uncertainties, therefore it does not need prior time-shift data to be
trained. This results in a widely applicable method in time-lapse seismic data anal-
ysis. We explore the generalization of the method to unseen data both in the same
geological setting and in a different field, where the generalization error stays constant
and within an acceptable range across test cases. We further explore upsampling of
the warp field from a smaller network to decrease computational cost and see some
deterioration of the warp field quality as a result.

J. S. Dramsch, A. N. Christensen, C. MacBeth, and M. Lüthje (2019b). “Deep Unsu-
pervised 4D Seismic 3D Time-Shift Estimation with Convolutional Neural Networks”.
In: IEEE Transactions in Geoscience and Remote Sensing. In Review, Chapter 7

7.4.1 Introduction
Seismic time-lapse data consists of two 3D reflection amplitude cubes that represent the
subsurface they were collected from. These cubes are acquired years apart with expected
changes in the subsurface due to e.g. hydrocarbon production. The differences in the
subsurface cause changes in both amplitudes and velocities, which introduces misalign-
ment of seismic reflectors. Measuring the misalignment and aligning these surfaces to
obtain a reliable difference cube is one of the main disciplines in 4D seismic processing.

These time shifts are most commonly obtained by windowed cross-correlation and
other statistical or signal processing approaches (MacBeth et al., 2019). Considering the
recent advances of machine learning in imaging and domain transfer, we explore possi-
bilities of alignment with convolutional neural networks. Machine learning approaches,
however, most commonly require labeled data to find a mapping f(x) = y, with x being
the input data, f being the blackbox algorithm like a neural network, and y being the
labels or target.

A common problem in machine learning for subsurface science is determining the
ground truth. Obtaining information from the subsurface is often prohibited by cost,
and e.g. core samples are highly localised data that is often altered by the extraction
method as well as the sheer act of unearthing the sample. Additionally, synthetic data
may introduce the inverse crime (Wirgin, 2004) of using the same theory to generate
and invert data. Luckily, the physics of medical imaging and inversion is very similar to
geophysics, where methods can be validated and fine-tuned. The main method discussed
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in this paper is adapted from the medical imaging literature.
The lack of ground truths leads to another problem that deep learning address but

do not solve. For classic neural networks, we need to know a target label dataset, i.e.
knowing a prior warp velocity. In 4D seismic this would mean employing an established
method to obtain time shifts. This would effectively result in abstracting that method
in a neural network, or modelling the warp, which would lead to committing the inverse
crime. Logically, this lead us to explore unsupervised methods.

We discuss several options for architectures for mapping the monitor seismic cube
to the base seismic cube directly within the network. This is possible in unsupervised
configurations but depending on the architecture of the network this problem can be
ill-constrained and generate non-physical mappings. One warranted criticism of deep
learning and neural networks is the lack of explainability and limited interpretability.
However, we employ a deep neural network to obtain warp velocity vectors, a 3D equiv-
alent of time shifts, for dense deterministic warping instead of directly obtaining the
warped result from a neural network. This enables us to interpret the warping vectors
and constrain the warp path in addition to the warp result.

Moreover, we present the first 4D seismic 3D time shift estimator with uncertainty
measures. We achieve this by implementing a variational layer that samples from a
Gaussian with the reparametrization trick (Kingma et al., 2015). Therefore, we can
counteract some of the influence of noise on the performance of the network.

7.4.2 Theory
Extracting time shifts from 4D seismic data is most commonly done trace-wise (1D),
which limits the problem to depth. This provides sufficient results for simple problems.
However, geologically complex systems and pre-stack time shifts benefit from obtaining
3D time-shifts. We discuss classical 3D time-shift extraction methods, we then go on to
discuss relevant deep learning methods. These methods extract time-shifts with different
constraints which we explore. For brevity we present the results of the best method to
date, developed for the medical domain: VoxelMorph (Balakrishnan et al., 2019).

The goal of both conventional and machine learning methods is to obtain a warp
velocity field u(x, y, z) that ideally aligns two 3D cubes B andM within given constraints.
That means a sample m[x, y, z] will be aligned by adjusting m[x+ ux, y+ uy, z+ uz]. In
image processing this is considered ”dense alignment” or ”dense warping”, hence we need
a dense vector field to align each sample in the base and the monitor cube. Generally,
u(x, y, z) ∈ R3, which implies interpolation to obtain the warped result.

7.4.2.1 Conventional Methods
Most conventional methods in 4D seismic warping focus on 1D methods (Hatchell et al.,
2005b), which include local 1D cross-correlation, dynamic time warping (Hale, 2013c),
optical flow methods and methods based on Taylor expansion (Zabihi Naeini et al., 2009).
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We do not cover these methods in detail, but focus on the limited applications of 3D
methods in 4D seismic warping.

Local 3D Cross Correlation Hall et al (Hall et al., 2005) introduced local 3D cross-
correlation as a method for surface-based image alignment. The horizon-based nodal
cross-correlation results were then linearly interpolated to full cubes. Hale et al (Hale,
2006) extended this method to full seismic cubes by calculating the multi-dimensional
cross-correlation windowed by a Gaussian with a specified radius. The correlation re-
sults are normalized to avoid spurious correlations by amplitude fluctuations and high-
amplitude events. Subsequently the cross-correlation result is searched for peaks using
the following triple sum:

c[ux, uy, uz] =
∞∑

x,y,z=−∞
b[x, y, z] ·m[x+ ux, y + uy, z + uz], (7.4)

with c being the cross-correlation lag. The computational complexity of this method is
O(Ns ×Nl) with Ns being the total number of samples and Nl being the total number
of lags.

Stabilization of the results of 3D cross-correlation is obtained by applying spectral
whitening of the signals and smoothing the images with a Gaussian filter without in-
creasing the computational complexity despite the windowing function (Hale, 2006).

Inversion-based methods Rickett et al (Rickett et al., 2007a) describe a non-linear
inversion approach, with the objective function being

E = |d− f(m)|2 + |∇x(m)|2 + |∇y(m)|2 + |∇2
z(m)|2 (7.5)

with m being the model vector, d being the data vector. The non-linear inversion is
constrained by applying the first-derivative to the spatial dimensions z, y and Laplacian
in z to obtain a smooth solution. Cherrett et al(Cherrett et al., 2011) implement a
geostatistical joint inversion that uses the geostatistical information combined with data
constraints as a prior in a Bayesian inversion scheme.

P (x|geostats, data) ∝ exp
(
−(x− µ)TC−1(x− µ)/2

)
(7.6)

with C being the posterior covariance matrix, x the sample mean vector and µ being
the posterior mean vector.

Medical Imaging According to (Zitova et al., 2003), the rich history of medical im-
age registration consists of four main steps, being feature detection, feature matching,
transform model estimation, and image resampling and transformation. Within the
scope of this paper, transform model estimation is the main interest, which defines a
mapping function from the base image to the moving image. The transformation models
fall into several general categories. Global Mapping Models define a global transforma-
tion of the entire image, which is unsuitable to this application of 4D seismic. Local
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mapping models have been shown to outperform global methods (Zitova et al., 2003)
and include piecewise mappings and weighted least squares (Goshtasby, 1988). Alter-
natively, transforming the moving image through radial basis functions and matching
a globally linear model matches images with significant local distortion (Zitova et al.,
2003). Finally, elastic matching presents a non-rigid registration method (Bajcsy et al.,
1989) that finds an optimal matching between images according to intensity values and
boundary conditions such as smoothness and stiffness of the matching vectors (Klein
et al., 2009). Diffeomorphic mapping is not explicitly outlined in (Zitova et al., 2003),
but particularly relevant to this paper. In (Christensen et al., 1994) large deformation
flows were put forth that greedily find a parth through diffeomorphic transformations.
Diffeomorphisms have gained great attention in the medical field, particularly with large
deformation diffeomorphic metric mapping (LDDMM) (Beg et al., 2005). This method
iteratively finds the shortest path through small diffeomorphisms and is computation-
ally expensive, which is a possible explanation that they have not found greater use in
geophysics, due to larger datasets.

7.4.2.2 Machine Learning Methods
The machine learning methods discussed in this section are imaging based, and therefore
rely on recent advances of convolutional neural networks (CNN) in deep learning. We
discuss different approaches that include supervised and unsupervised / self-supervised
methods. These methods are all based on convolutional neural networks (CNNs).
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Figure 7.2: Schematic convolutional neural network. The input layer (yellow) is con-
volved with a 3 × 3 filter that results in a spatially subsampled subsequent layer that
contains the filter responses. This second layer is again convolved with a 3× 3 filter to
obtain the next layer. Subsampling is achieved by strided convolutions or pooling.

CNNs are a type of neural network that is particularly suited to imaging approaches.
They learn arbitrary data-dependent filters that are optimized based on the chosen
objective via gradient descent. These filters can operate on real images, medical images,
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or seismic data alike. The convolutional filter benefits from weight sharing, making the
operation efficient and particularly suited to GPUs or specialized hardware. In Figure 7.2
we show a schematic image, that is convolved with moving 3x3 filters repeatedly to obtain
a spatially downsampled representation. These convolutional layers in neural networks
can be arranged in different architectures that we explore in the following analysis of
prior methods in image alignment.

Supervised CNNs Supervised end-to-end CNNs rely on reliable ground truth, in-
cluding the time shifts being available. Training a supervised machine learning system
requires both a data vector x and a target vector y to train the blackbox system f(x)⇒ y.
This means that we have to provide extracted time-shifts from other methods, which
implicitly introduce assumptions from that method into the supervised model. Alterna-
tively, expensive synthetic models would be required.

The supervised methods are largely based on Optical Flow methods (Dosovitskiy
et al., 2015; Ranjan et al., 2017). The FlowNet (Dosovitskiy et al., 2015) architecture is
based on an Encoder-Decoder CNN architecture. Particularly, FlowNet has reached wide
reception and several modifications were implemented, namely FlowNet 2.0 (Ilg et al.,
2017) improving accuracy, and LiteFlowNet (Hui et al., 2018) reducing computational
cost. SpyNet (Ranjan et al., 2017) and PWC-Net (Sun et al., 2018) implement stacked
coarse-to-fine networks for residual flow correction. PatchBatch (Gadot et al., 2016)
and deep discrete flow (Güney et al., 2016) implement Siamese Networks (Chopra et
al., 2005) to estimate optical flow. Alternatively, DeepFlow (Weinzaepfel et al., 2013)
attempts to extract large displacements optical flow using pyramids of SIFT features.
These methods introduce varying types of network architectures, optimizations, and
losses that attempt to solve the optical flow problem in computer vision.

Unsupervised CNNs Unsupervised or self-supervised CNNs only rely on the data,
relaxing the necessity for ground truth time shifts. In (Meister et al., 2018) the FlowNet
architecture is reformulated into an unsupervised optical flow estimator with bidirec-
tional census loss called UnFlow. The UnFlow network relies on the smooth estimation
of the forward and backward loss, then adds a consistency loss between the forward
and backward loss and finally warps the monitor to the base image to obtain the fi-
nal data loss. Optical flow has historically underperformed on seismic data, due to both
smoothness and illumination constraints. However, UnFlow replaces the commonly used
illumination loss by a ternary census loss (Zabih et al., 1994) with the ϵ-modification by
(Stein, 2004). While this bears possible promise for seismic data, UnFlow implements
2D losses as opposed to a 3D implementation that we focus on.

Cycle-consistent Generative Adversarial Networks Cycle-GANs are a unsuper-
vised implementation of Generative Adversarial Networks that are known for domain
adaptation (Zhu et al., 2017). These implement two GAN networks that perform a for-
ward and backward operation that implements a cycle-consistent loss in addition to the
GAN loss. The warping problem can be reformulated as a domain adaptation problem.
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This implements two Generator networks F and G and the according discriminators DX

and DY . These perform a mapping G : X → Y and F : Y → X, trained via the GAN
discrimination. The cycle-consistency implements x → G(x) → F (G(x)) ≈ x with the
backwards cycle-consistency being y → F (y)→ G(F (y)) ≈ y.

Cycle-GANs such as pix2pix (Isola et al., 2017) separate image data into a content
vector and a texture vector, which could bear promise in the seismic domain, adapting
a wavelet vector and an interval vector (Mosser et al., 2018c). However, the confound-
ing of imaging effects, changing underlying geology, changing acquisition, etc makes the
separation non-unique. Moreover, extracting the time shift information and condition-
ing in the GAN is a very complex problem. The Recycle-GAN (Bansal et al., 2018)
addresses temporal continuity in videos, this is however hard to transfer to seismic data,
considering the low number of time-steps in a 4D seismic survey as opposed to videos.
Furthermore, the lack of interpretability of GANs at the point of writing, prohibits
GANs from replacing many physics-based approaches, like the extraction of time-shifts.

7.4.3 Method
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Figure 7.3: 2D representation of Modified 3D Voxelmorph architecture to obtain full
scale warp velocity field. The Encoder side of the U-Net architecture consists of four
consecutive Convolutional (orange) and Pooling (red) layers, followed by a convolutional
Bottleneck layer. The decoder of the U-Net architecture consists offour Upsampling
(blue) and Convolutional layers are connected to the respective same size layers in the
Encoder. The output is passed to two convolutional layers that are sampled by the
reparametrization trick, to provide the static velocity field. The field is integrated via
scaling and squaring and passed to the Spatial Transformer layer (green), which trans-
forms the monitor to optimally match the base image, which is enforced by minimizing
the mean squared error (MSE) of the images.
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The Voxelmorph (Balakrishnan et al., 2019) implements a U-net (Ronneberger et
al., 2015b) architecture to obtain a dense warp velocity field and subsequently warps
the monitor volume to match the base volume. This minimizes assumptions that have
to be satisfied for applying optical flow-based methods. Additionally, the Voxelmorph
architecture was specifically developed on medical data. Here we use an advancement of
Voxelmorph that includes a variational layer, which introduced uncertainty to the static
velocity estimation, developed in (Dalca et al., 2018b). Medical data often has fewer
samples, like seismic data, as opposed to popular video datasets, which FlowNet and
derivative architectures are geared towards application of popular video datasets. A U-
net architecture is particularly suited for segmentation tasks and transformations with
smaller than usual amounts of data, considering it was introduced on a small biomedical
dataset. The short-cut concatenation between the input and output layers stabilizes
training and avoids the vanishing gradient problem. It is particularly suited to stable
training in this image matching architecture. In Figure 7.3 the U-Net is the left-most
stack of layers, aranged in an hourglass architecture with shortcuts. These feed into a
variational layer N (µ, σ), the variational layer is sampled with the reparametrization
trick, due to the sampler not being differentiable (Kingma et al., 2015). The resulting
differential flow is integrated using the VecInt layer, which uses Scaling and Squaring
(Higham, 2005). Subsequently, the data is passed into a spatial transformation layer.
This layer transforms the monitor cube according to the warp velocity field obtained
from the integrated sampler. The result is used to calculate the data loss between the
warped image and the base cube.

More formally, we define two 3D images b, m being the base and monitor seismic
respectively. We try to find a deformation field ϕ parameterized by the latent variable
z such that ϕz : R3 → R3. The deformation field itself is defined by this ordinary
differential equation (ODE) according to (Balakrishnan et al., 2019):

∂ϕ(t)

∂t
= v(ϕ(t)), (7.7)

where t is time, v is the stationary velocity and the following holds true ϕ(0) = I. The
integration of v over t = [0, 1] provides ϕ(1). This integration represents and implements
the one-parameter diffeomorphism in this network architecture. The variational Vox-
elmorph formulation assumes an approximate posterior probability qψ(z|b; m), with ψ
representing the parameterization. This posterior is modeled as a multivariate normal
distribution with the covariance Σz|m,b being diagonal:

qψ(z|b; m) = N (z,µz|m,b,Σz|m,b), (7.8)

the effects of this assumption are explored in (Dalca et al., 2018b).
The approximate posterior probability qψ is used to obtain the variational lower

bound of the model evidence by minimizing the Kullback-Leibler (KL) divergence with
p(z|b; m) being the intractable posterior probability. Following the full derivation in
(Dalca et al., 2018b), considering the sampling of zk ∼ qψ(z|b,m) for each image pair
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(b,m), we compute m ◦ ϕzk
the warped image we obtain the loss:

L(ψ; b,m) = −Eq[log p(b|z; m)]
+ KL[qψ(z|b; m)||pψ(z|b; m)]
+ const

= 1
2σ2K

∑
k

||b−m ◦ ϕzk
||2

+ 1
2

[tr(λDΣz|x;y)− log Σz|x;y)

+ µT
z|m,bΛzµz|m,b] + const,

(7.9)

where Λz is a precision matrix, enforcing smoothness by the relationship Σ−1
z = Λz = λL,

λ controlling the scale of the velocity field. Furthermore, following (Dalca et al., 2018b)
L = D−A is the Laplacian of a neighbourhood graph over the voxel grid, where D is the
graph degree matrix, and A defining the voxel neighbourhood. K signifies the number of
samples. We can express µz|m,b and Σz|m,b as variational layers in a neural network and
sample from the distributions of these layers. Given the diagonal constraint on Σ, we
define the variational layer as the according standard deviation σ of the corresponding
dimension. Therefore, we sample X ∼ N (µ, σ2) using the reparameterization trick first
implemented in variational auto-encoders (Kingma et al., 2013). The reparameterization
trick defines a differentiable estimator for the variational lower bound, replacing the
stoachastic, non-differentiable and therefore untrainable, sampler.

Defining the architecture and losses as presented in (Dalca et al., 2018b), ensures
several benefits. The registration of two images is domain-agnostic, which enables us to
apply the medical algorithm to seismic data. The warp field is diffeomorphic, which en-
sures physically viable, topology-preserving warp velocity fields. Moreover, this method
implements a variational formulation based on the covariance of the flow field. 3D
warping with uncertainty measure has not been used in seismic data before.

The network is implemented using Tensorflow (Martı́n Abadi et al., 2015) and Keras
(Chollet et al., 2015a). Our implementation is based on the original code in the Voxel-
morph package (Dalca et al., 2018a).

7.4.4 Experimental Results and Discussion
7.4.4.1 Experimental Setup
The experimental setup for this paper is based on a variation of the modified Voxel-
morph (Balakrishnan et al., 2019) formulation. We extended the network to accept
patches of data, because our seismic cubes are generally larger than the medical brain
scans and therefore exceed the memory limits of our GPUs. Moreover, Voxelmorph in
its original formulation provides sub-sampled flow fields, this is due to computational
constraints. We decided to modify the network to provide full-scale flow fields, despite
the computational cost. This enables direct interpretation of the warp field, which is
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common in 4D seismic analysis. However, we do provide an analysis in Section 7.4.4.2
of the sub-sampled flow-field interpolated to full scale, in the way it would be passed to
the Spatial Transformer layer.

The code is made available in (Dramsch, 2020b). The model is trained with the Adam
optimizer (Kingma et al., 2014) with a learning rate of 0.001 and weight decays β1 = 0.9
and beta2 = 0.999. We train the model for 350 epochs to account for experimentation
and time. We set the regularization parameter λ = 10 and the image noise parameter
σ = 0.02 in accordance with the authors of (Dalca et al., 2018b). We adjust the batch-
size to the maximum on our architecture, which was 16 and purely manually tuned to
the maximum possible. The KL divergence and MSE loss are unweighted in the total
loss.

The network definition for the subsampled flow field differs from the definition in
Figure 7.3 that the last upsampling and convolution layer in the Unet, including the
skip connection, right before the variational layers (µ, σ) is omitted. That leaves the
flow field at a subsampled map by a factor of two. Computationally, this lowers the cost
on the Integration operation before resampling for the Spatial Transformer.

Figure 7.4: Training Losses over time with the KL-divergence at the sampling layer, the
data loss calculated by MSE, and the combined total loss.
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The data situation for this experiment is special in the sense that the method is self-
supervised. We therefore do not provide a validation dataset during training. The data
are 6 surveys from the North Sea. Main field from years 1088, 2005 A, 2005 B, and 2012.
Further we compare to a different field 1903 and 2005 with different geology, acquisition
geometry and acquisition parameters. While we would be content with the method
working on the field data (years 1988 and 2005 Survey A) by itself, we do validate the
results on separate data from the same field which was acquired with different acquisition
parameters and at different times (years 2005 Survey B and 2012). Moreover, we test the
data on seismic data from an adjacent field that was acquired independently (years 1993
and 2005). All data is presented with a relative coordinate system due to confidentiality,
where 0 s on the y-axis does not represent the actual onset of the recording. The field
geology and therefore seismic responses are very different. Due to lack of availability we
do not test the trained network on land data or data from different parts of the world.
Considering, that the training set is one 4D seismic monitor-base pair, a more robust
network would emerge from training on a variety of different seismic volumes.

Figure 7.4 shows the training losses of the batch training. Within a few epochs
the network converges strongly, however within 10 epochs the KL divergence increases
slightly over the training. The data loss, optimizing the warping result decreases over the
training period. An increase of the KL divergence is acceptable as long as the total loss
decreases, which indicates better matching of the volumes. In case the KL divergence
would increase vastly, it would violate the base assumption that the static velocity can
be approximated by Gaussians and requires re-evaluation.

7.4.4.2 Results and Discussion
The network presented generates warp fields in three dimensions as well as uncertainty
measures. We present results for three cases in Figure 7.5, 7.10, and 7.12 with the cor-
responding warp fieds and uncertainties in Figure 7.6, 7.11, and 7.13. In Figure 7.5 we
show the results on the data, which the unsupervised method was trained on. Obtain-
ing a warp field on the data itself is a good result, however, we additionally explore the
generalizability of the method. Considering the network is trained to find an optimum
warp field for the data it was originally trained on, we go on to test the network on
data from the same field, that was recorded with significantly different acquisition pa-
rameters in Figure 7.10. These results test the networks generalizability on co-located
data, therefore not expecting vastly differing seismic responses from the subsurface itself.
The are imaging differences and differences in equipment in addition to the 4D differ-
ence however. In Figure 7.12 we use the network on unseen data from a different field.
The geometry of the field, as well as the acquisition parameters are different, making
generalization a challenge.

In Figure 7.5 we collect six 2D panels from the 3D warping operation. In Figure 7.5(a)
and Figure 7.5(b) we show the unaltered base and monitor respectively. The difference
between the unaltered cubes is shown in Figure 7.5(e). In Figure 7.5(c) we show the
warped result by applying the z-warp field in Figure 7.5(d), as well as the warp fields in
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(a) Base Seismic (b) Monitor Seismic (c) Matched Monitor

(d) z-Direction Shifts (e) Difference Monitor-Base (f) Difference Matched-Base

Figure 7.5: Warp results and change in difference on training recall of 1988 to 2005a
data. Axes are relative to comply with confidentiality.
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(a) x-direction Shifts (b) y-direction Shifts (c) z-direction Shifts

(d) x-direction Uncertainty (e) y-direction Uncertainty (f) z-direction Uncertainty

Figure 7.6: Warp fields (top) with uncertainties (bottom) that accompanies training
recall in Figure 7.5
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(x,y) direction fully displayed in Figure 7.6 including their respective uncertainties. The
difference of the warped result in Figure 7.5(f) is calculated from the matched monitor
in Figure 7.5(c) and the base in Figure 7.5(a).

It is apparent that the matched monitor significantly reduced noise by mis-aligned
reflections. In Table 7.1 we present the numeric results. These were computed on the 3D
cube for an accurate representation. We present the root mean square (RMS) and mean
absolute error (MAE) and the according difference between Monitor and Matched Dif-
ference results. We present RMS and MAE to make the values comparable in magnitude
as opposed the mean squared error (MSE). We present both values, because the RMS
value is more sensitive to large values, while MAE scales the error linearly therefore not
masking low amplitude mis-alignments. Both measurements show a reduction on the
train data to 50% or below. The test on both the validation data on the same field and
the test data on another field show a similar reduction, while the absolute error differs
in a stable manner.

In Figure 7.6 we present the three dimensional warp field to accompany the re-
sults in Figure 7.5. Figure 7.6(a), 7.6(b), and 7.6(c) show the warp field in x, y, and
z-direction. The z-direction is generally referred to as time shifts in 4D seismic. Fig-
ure 7.6(d), 7.6(e), and 7.6(f) contain the corresponding uncertainties in x, y, and z-
direction obtained from the network.

Recall to Training Data In Figure 7.5 we evaluate the results of the self-supervised
method on the training data itself. The main focus is on the main reflector in the
center of the panels. The difference in Figure 7.5(e) shows that the packet of reflectors
marked reservoir in the monitor is out of alignment, causing a large difference, which
is corrected for in Figure 7.5(f). The topmost section in the panel of Figure 7.5(c)
shows the alignment of a faulted segment, marked fault in the monitor, to an unfaulted
segment in the base. The fault appearing is most likely due to vastly improved acquisition
technology for the monitor.

The warp fields in Figure 7.6 are an integral part in QC-ing the validity of the
results. Physically, we expect the strongest changes in the z-direction in Figure 7.6(c).
The changes in Figure 7.6(a) and Figure 7.6(b) show mostly sub-sampling magnitude
shifts, except for the x-direction shifts around the fault in the top-most panel present
in the monitor in Figure 7.5(b). Figure 7.6(a) and Figure 7.6(b) show strong shifts
at 0.4s on the left of the panel which corresponds to the strong amplitude changes in
the base and monitor. On the one side these correspond to the strongest difference
section, additionally these are geological hinges, which are under large geomechanical
strain. However, these are very close to the sides of the warp, which may cause artifacts.
Figure 7.6(d), Figure 7.6(e), and Figure 7.6(f) show the uncertainty of the network.
These uncertainties are across the bank within the 10% range of the sampling rate
(∆t = 4 ms, ∆x, y = 25 m). The certainty within the bulk package in the center of
the panels is the lowest in x-, y-, and z-direction. While being relatively lover in the
problematic regions discussed before.

The warp field in Figure 7.6(d) contains some reflector shaped warp vectors around
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Run Monitor Matched Ratio Monitor Matched Ratio
RMS RMS % MAE MAE %

Baseline 0.1047 0.0718 68.6 0.0744 0.0512 68.7
Train 0.1047 0.0525 50.1 0.0744 0.0348 46.7
Test A 0.0381 0.0237 62.2 0.0291 0.0172 59.1
Test B 0.0583 0.0361 62.0 0.0451 0.0254 56.4

Table 7.1: Quantitative Evaluation of Results. RMS and MAE calculated against re-
spective base data. Training recall, Test A - Same field, different acquisition, Test B -
different field, different acquisition

0.4 s, which is due to the wavelet mismatch of the 1988 base to the 2005 monitor. The
diffeomorphic nature of the network aligns the reflectors in the image, which causes some
reflector artifacts in the z-direction maps.

(a) Full-Scale Warp Field (b) DIW Timeshifts

Figure 7.7: Comparison of Voxelmorph warp
field (left) and Dynamic Image Warping
(right) warp fields.

Comparison to Baseline Method
We use the Dynamic Image Warping
method (Hale, 2013c) to align the im-
ages in Figure 7.5. This method extends
the Dynamic Time Warping method to
2D and provides a much improved re-
sult in 2D compared to standard cross-
correlation and DTW methods. Inver-
sion methods need pre-stack seismic data,
which is not available. We chose this
baseline to provide a fair comparison with
the available data. Figure 7.7 shows the
timeshifts or warp fields generated by the
Voxelmorph network and by the DIW
algorithm. The DIW algorithm shows
a smoothed image. Overall, the Subfi-
gre 7.7b shows the general trends of Sub-
figre 7.7a. The Voxelmorph algorithm is
more detailed than the DIW image, how-
ever the general magnitude of the time
shifts matches well in the correct areas.

Figure 7.8 shows the matched monitors
from Voxelmorph and DIW. The matched monitors align quite well without any sig-
nificant discrepancies. The matched difference shows that the Voxelmorph algorithm
performs similarly to the baseline method, while removing more 4D noise from the im-
age. It keeps the 4D signal intact, albeit slightly varying. The DIW algorithm seems
to struggle to align the topmost part of the image, while Voxelmorph aligns these well,
removing additional 4D noise. Table 7.1 confirms this quantitatively, where the overall
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RMSE and MAE are reduced proportionally.

Generalization of the Network While the performance of the method on a data
set by itself is good, obtaining a trained model that can be applied on other similar
data sets is essential even for self-supervised methods. We test the network on two
test sets, Test A is conducted on the same geology with unseen data from a different
acquisition, while Test B is on a different field and a different acquisition. The network
was trained on a single acquisition relation (2005a - 1988). In Figure 7.10 we present
the crossline data from the same field the network was trained on. The data sets was
however acquired at a different calendar times (2005b - 2012), with different acquisition
parameters. It follows that although the geology and therefore the reflection geometry
is similar, the wavelet and hence the seismic response are vastly different. This becomes
apparent when comparing the base Figure 7.10a to Figure 7.5(b), which were acquired
in the same year.

Test A evaluates the network performance on unseen data in the same field (Train:
1988-2005a, Test A: 2005b - 2012). The quantitative results in Table 7.1 for Test A
generally show lower absolute errors compared to the training results in Section 7.4.4.2.
The reduction of the overall amplitudes in the difference maps is reduce by 40%. The
unaligned monitor difference in Figure 7.10(e) shows a strong coherent difference around
below the main packet of reflectors around 0.3 s to 0.4 s. This would suggest a velocity
draw-down in this packet. While the top half of the unaligned difference contains some
misalignment, we would expect the warp field to display a shift around 0.35 s, which
can be observed in Figure 7.10(d). The aligned difference in Figure 7.10(f) contains less
coherent differences. The difference does still show some overall noise in the maps. This
could be improved upon by a more diverse training set. The higher resolution data from
2005 and 2012 possibly has an influence on the result too. Regardless, we can see some
persisting amplitude difference around 0.4 s which appears to be signal as opposed to
some misalignment noise above. The warp fields in Figure 7.11 show relatively smooth
warp fields in x- and y-direction. The warp field in Figure 7.11(f) shows overall good
coherence, including the change around 0.4 s we would expect. The uncertainty values
are in sub-sampling range, with the strongest certainty within the strong reflector packet
at 0.35 s.

Test B evaluates the network performance on a different field, with different geology,
with unrelated acquisition geometry and equipment and at different times. The test
shows a very similar reduction of overall errors in Table 7.1. The RMS is reduced by
38% and the MAE is reduced more slightly more in comparison to Test A. In Figure 7.12
we present the seismic panels to accompany Test B. The data in Figure 7.12(a) and Fig-
ure 7.12(b) is well resolved and shows good coherence. However, the unaligned difference
in Figure 7.12(e) shows very strong variations in the difference maps. Figure 7.12(f) re-
duces these errors significantly, bringing out coherent differences in the main reflector at
0.27 s. We can see strong chaotic differences in Figure 7.12(e), due to the faulted nature
of the geology. The network aligns these faulted blocks relatively well, however, some
artifacts persist. This is consistent with the warp fields in Figure 7.13. The x- and y-
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(a) Base Seismic (b) DTW Monitor Seismic (c) Voxelmorph Matched Mon-
itor

(d) Unaligned Difference (e) DTW Difference (f) Voxelmorph Difference

Figure 7.8: Results of Voxelmorph warping compared to baseline dynamic image warping
algorithm. Top row shows the aligned monitor, bottom row shows the difference to the
base volume.
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direction in Figure 7.13(d) and Figure 7.13(e) respectively show overall smooth changes,
around faults, these changes are stronger. The z-direction changes are consistent with
the Training validation and Test A, where the changes are overall stronger. This is also
consistent with our geological intuition.

(a) Full-Scale Matched
Difference

(b) Upsampled Matched
Difference

(c) Full-Scale Warp Field (d) Upsampled Warp
Field

Figure 7.9: Comparison of matched differ-
ences (top) and z-direction warp field (bot-
tom) of full-scale neural architecture (left)
and subsampled neural architecture (right).

Subsampled Flow The original Voxel-
morph implementation uses a subsampled
warp field. The authors claim two ben-
efits, namely a smoother warp velocity
field and reduced computational cost. The
aforementioned results were obtained us-
ing our full-scale network. In Figure 7.9
we present the full scale and upsampled re-
sults on the training set. The matched dif-
ference in Figure 7.9b contains more over-
all noise compared to Figure 7.9a. This is
congruent with the warp fields in the fig-
ure. The upsampled z-direction warp field
in Figure 7.9d seems to have some alias-
ing on the diagonal reflector around 0.4 s.
This explains some of the artifacts in the
difference in Figure 7.9b. The overall warp
velocity in Figure 7.9d is smoother com-
pared to the full-scale field. However, the
general structure of coherent negative and
positive areas matches in both warp fields,
while the details differ. The main persis-
tent difference of the reflector packet at
0.4 s seems similar, nevertheless, the dif-
ferences further up slope to the right are
smoother in the full scale network result
and have stronger residual amplitudes in
the upsampled network. Overall, the full-
scale network results are better for seismic
data at a slightly increased computational
cost. The subsampled field introduced ar-
tifacts in our observations.

7.4.5 Conclusion
We introduce a deep learning based self-
supervised 4D seismic warping method.
Currently, time shifts are most commonly
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estimated in 1D due to computational constraints. We explore 3D time-shift estimation
as a viable alternative, which decouples imaging and acquisition effects, geomechanical
movement and changes in physical properties like velocity and porosity from confound-
ing into a single dimension. Existing 3D methods are computationally expensive, where
this learnt model can generalize to unseen data without re-training, with calculation
times within minutes on consumer hardware. Moreover, this method supplies invertible,
reproducible, dense 3D alignment while providing warp fields with uncertainty measures,
while leveraging recent advancements in neural networks and deep learning.

We evaluate our network on the training data and two different independent test
sets. We do not expect the aligned difference to be exactly zero, due to actual physical
changes in the imaged subsurface. Although the network is unsupervised, a transfer
to unseen data is desirable and despite some increase in the overall error possible. The
warping on the training data is very good and the warp fields are coherent and reflect the
physical reality one would expect. The transfer too unseen data works well, although
the misalignment error increases. The decrease in both RMS and MAE is consistent
across test sets.

Furthermore, we implement a variational scheme which provides uncertainty mea-
sures for the time shifts. On the data presented, we obtain subsample scale uncertainties
across all directions. The main assumption of the network is a diffeomorphic deforma-
tion, which is topology preserving. We show that the network handles faults well in both
training recall and test data, that in theory could violate the diffeomorphic assumption.

We go on to compare a full-scale network to an upsampled network. The full-scale
network yields better results and is preferable on seismic data in comparison to the
upsampled network presented in the original medical Voxelmorph.

We do expect the network to improve upon training on a more diverse variety of
data sets and seismic responses. While the initial training is time-consuming (25 h on a
Nvidia Titan X with Pascal chipset), inference is near instantaneous. Moreover, transfer
of the trained network to a new data set is possible without training, while accepting
some error. Alternatively fine-tuning to new data is possible within few epochs (<1 h).
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(a) Base Seismic (b) Monitor Seismic (c) Matched Monitor

(d) z-Direction Shifts (e) Difference Monitor-Base (f) Difference Matched-Base

Figure 7.10: Matched difference and warp field for generalization of network to same
field with different data (2005b and 2012).



134 7 3D Time Warping for 4D Data

(a) x-direction Shifts (b) y-direction Shifts (c) z-direction Shifts

(d) x-direction Uncertainty (e) y-direction Uncertainty (f) z-direction Uncertainty

Figure 7.11: Warp fields (top) with uncertainties (bottom) that accompanies same field
generalization in Figure 7.10
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(a) Base Seismic (b) Monitor Seismic (c) Matched Monitor

(d) z-Direction Shifts (e) Difference Monitor-Base (f) Difference Matched-Base

Figure 7.12: Matched difference and warp field for generalization of network to a different
field (1993 and 2005).
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(a) x-direction Shifts (b) y-direction Shifts (c) z-direction Shifts

(d) x-direction Uncertainty (e) y-direction Uncertainty (f) z-direction Uncertainty

Figure 7.13: Warp fields (top) with uncertainties (bottom) that accompanies generaliza-
tion to different field in Figure 7.12
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7.5 Contributions of This Study
In the paper, we present the modified self-supervised Neural Network system and test
the results on the training data itself and two generalization test sets. The first test set
is on the same field but recorded at different times to the training set, ensuring similar
underlying geology, whereas, the second test set is taken from an adjacent field, recorded
at different times, with different geology, testing the full transfer of the trained network.
We go on to test the original Voxelmorph architecture, which uses upsampled velocity
fields and evaluate the results against our modified architecture, which uses the full
flow field. Overall, this technique introduces a generalizable Deep Learning approach to
extract 3D time-shifts with uncertainty measures from raw stacked 4D seismic data.

The Voxelmorph network performs very well on seismic data with patch-based seismic
data. It is essential to implement the full-scale architecture to obtain reliable 3D time-
shifts on 4D seismic data. The network exhibits stable error on the unseen data on
the same field and differing test field, which indicates that the networks learn relevant
generalizable information. Despite being a 3D method, the primary shifts are estimated
in the z-direction, which is consistent with the expectation we have for seismic data.
The diffeomorphic assumption performs well on the seismic data even on faulted data,
preserving the topology. Additionally, unsupervised training reduces further implicit
assumptions from extracted time-shifts or synthetic models. The model would improve
from data augmentation methods and including multiple fields in the training data.
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CHAPTER 8
Conclusion of this Thesis

This thesis contributes Machine Learning applications in geoscience with a focus on
field data applications in 4D seismic, Backscatter Scanning-Electron Microscopy, and
Automatic Seismic Interpretation. Additionally, the introduction contains a published
review of the history of Machine Learning in geoscience with insights into the recent
interest around the topic.

The book chapter in Section 2.2 discusses the historic development of Machine Learn-
ing in geoscience. It highlights key papers and developments through the decades, re-
lating the developments to larger developments in the field of Artificial Intelligence and
Machine Learning. In the book key algorithms are detailed including Support Vector
Machine, Random Forest, Gaussian Process and the development from kriging, as well as,
key Neural Network developments and Deep Learning architectures that enable modern
applications throughout many scientific disciplines including geoscience as a whole.

The exploration of Backscatter Scanning-Electron Microscopy (BSEM) data in Chap-
ter 3 introduced a novel unsupervised method to extract chalk grain boundaries from
image data and shows the improvement of subsequent morphological filtering (Dram-
sch et al., 2018a). These methods reduce labour-intensive manual tasks, introducing
varying degrees of automation in geoscience workflows. Following the extraction of the
boundaries in the BSEM images, computational granulometry can be performed. This
includes statistics about grain size and circularity of the grains and the orientation of
grains. Commonly this data had to be obtained by manual measurement of every grain.
The unsupervised nature of this application means that no training data is necessary;
in turn, it can be used to obtain high-quality training data for subsequent supervised
machine learning tasks.

The research in Chapter 4 showed that transfer learning could alleviate the necessity
for large amounts of labelled data, by re-using a Neural Network trained on natural
images. This study showed that Neural Networks can be transferred to seismic data
and outperform smaller networks trained from scratch. The smaller network size was
necessary to avoid overfitting. The source code for this research was made available and
has been of use to multiple researchers (Dramsch, 2018a). This has broad applications in
industry and research settings performing Automatic Seismic Interpretation (ASI). The
limited availability of labelled data and wide availability of pre-trained network archi-
tectures makes this a viable option to obtain improved results and more robust models.
Moreover, this insight is applicable to pre-training geoscientific Neural Networks.

Dramsch et al. (2019f) shows that explicitly using phase information as input in a
complex-valued neural network can stabilize the reconstruction of compressed seismic
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data. The smaller complex-valued network in Chapter 5 outperforms larger real-valued
networks; however, a very large real-valued network that does not compress the seismic
data can implicitly learn partial phase information. The paper touches on deficits of cur-
rent metrics applied to geoscience and exposes a periodic dimming effect of frequencies
from neural networks that should be further investigated, particularly in the context
of aliasing. This paper led to the creation of the open-source software package keras
complex to enable complex-valued deep learning in Tensorflow (Manual in E.5). Con-
sidering the modularity of neural networks, this insight can be transferred to other deep
learning tasks on physical data like seismic data. Additionally, this research could lead
to further investigation of including known physical information in neural networks not
limited to explicitly using the phase information as input.

Chapter 6 introduces a novel method to perform pressure-saturation inversion on am-
plitude difference maps (Dramsch et al., 2019d). This work incorporates basic physical
relationships directly as features into the neural network architecture, which was shown
to stabilize the training result. Moreover, this work shows the possibility of training
Deep Neural Networks on simulation data and subsequently transferring the network to
field data. This particularly was enabled by applying Gaussian noise within the network.
The Deep Neural Network results were compared to results from the Bayesian inversion
showing a promising application of Deep Neural Networks in 4D Quantitative Interpre-
tation (Dramsch et al., 2019d). While this work has attracted interest in a sponsors
meeting and the workshop presentations (Dramsch et al., 2019d; Dramsch et al., 2019e),
further investigation into model explainability and lower complexity baseline models is
necessary (Côrte et al., 2020; Corte et al., 2020).

In Chapter 7 a novel method for time-shift extraction is presented. This method com-
bines recent advancements in diffeomorphic mapping, Deep Learning and unsupervised
learning to introduce a 3D time shift extraction method including uncertainty values,
where 1D extraction is the standard (Dramsch et al., 2019b). The method is shown to
work on 3D seismic post-stack data with strongly differing acquisition parameters, with-
out supplying any time shift information. After applying the method, the 3D seismic
volumes are well aligned, with the diffeomorphic constraint performing well on seismic
data. This work tests the trained network on two other 3D seismic volume pairs to test
the generalization of the Convolutional Neural Network after training. The two test sets
show that the trained model on a single 3D seismic volume pair transfers well to the
same field with different acquisition parameters and even a different field with a vastly
different geological setting.

Overall, this thesis shows Deep Learning applications in seismic geophysics and re-
sulted in multiple workshop, conference, journal papers, and a book chapter, including
reproducible Python code for all publications. The publications, developed through
interdepartmental and international collaboration, have been disseminated at interna-
tional workshops and conferences. Two novel methods for 4D seismic analysis were
introduced and compared to conventional methods. Moreover, transfer learning as a
viable application in Automatic Seismic Interpretation was shown and has found wide
application. The Python code in this thesis has been open-sourced for all published
papers for reproducibility including the open-source package ”keras complex”.



APPENDIXA
ImageNet Results

Table A.1: ImageNet results of different neural network architectures (Partial resource
from Papers With Code)

Name Citation Top-1 [%] Top-5 [%] Param [M]

AlexNet Krizhevsky et al. (2012b) 63,3 84,6 60
VGG-16 Simonyan et al. (2014a) 74,4 91,9 138
VGG-19 Simonyan et al. (2014a) 74,5 92,0 144
AmoebaNet-B Real et al. (2019) 82,3 96,1 84
AmoebaNet-C Real et al. (2019) 83,1 96,3 155,3
DenseNet-201 Huang et al. (2017) 78,5 94,4 20
EfficientNet-B1 Tan et al. (2019b) 78,8 94,4 7,8
EfficientNet-B2 Tan et al. (2019b) 79,8 94,9 9,2
EfficientNet-B3 Tan et al. (2019b) 81,1 95,5 12
EfficientNet-B4 Tan et al. (2019b) 82,6 96,3 19
EfficientNet-B5 Tan et al. (2019b) 83,3 96,7 30
EfficientNet-B6 Tan et al. (2019b) 84,0 96,9 43
EfficientNet-B7 Tan et al. (2019b) 85,0 97,2 66
Inception V1 Szegedy et al. (2015) 69,8 89,9 5
Inception V2 Ioffe et al. (2015) 74,8 92,2 11,2
Inception V3 Szegedy et al. (2016) 78,8 94,4 23,8
InceptResNet V2 Szegedy et al. (2017) 80,1 95,1 55,8
MixNet-S Tan et al. (2019c) 75,8 92,8 4,1
MixNet-M Tan et al. (2019c) 77,0 93,3 5
MixNet-L Tan et al. (2019c) 78,9 94,2 7,3
NasNet-A6 Zoph et al. (2018) 82,7 96,2 89
MNasNet-A1 Tan et al. (2019a) 76,7 93,3 5,2
MNasNet-A3 Tan et al. (2019a) 75,2 92,5 3,9
FixPNasNet-5 Touvron et al. (2019) 83,7 96,8 86,1
ResNet-50-D He et al. (2019) 77,1 93,5 25
FixResNet-50 Touvron et al. (2019) 79,1 94,6 25,6
ResNet-101 He et al. (2016) 78,2 93,9 40
ResNeXt-101 Xie et al. (2017) 80,9 95,6 83,6
Oct-ResNet-152 Chen et al. (2019) 82,9 96,3 67

https://paperswithcode.com/


142



APPENDIX B
Journal Papers

B.1 An Integrated Approach to Fracture
Characterization of the Kraka Field

Abstract: Oil and gas production of tight chalk reservoirs frequently rely on the
presence of natural fractures, which increases the effective permeability of the reser-
voirs. Knowledge of these fracture systems can therefore be used strategically in well
planning as well as in IOR and EOR efforts. Here we present an integrated workflow
for fracture characterization in chalk, developed in the Kraka Field, located in the
Danish sector of the North Sea. The workflow is based on data from borehole images,
cores and seismic. By introducing two ant-tracked attribute volumes, which display
structural trends below the resolution of amplitude seismic, we are able to correlate
features at different scales. In Kraka, this approach has revealed that the fracture
pattern is more complex than previously suggested. We propose that fracture gen-
eration and propagation in the field is in part controlled by the regional maximum
horizontal stress and in part formed in response to salt movements.

T. M. Aabø, J. S. Dramsch, C. L. Würtzen, S. Seyum, F. Amour, M. Welch, and M.
Lüthje (2020). “An integrated workflow for fracture characterization in chalk reser-
voirs, applied to the Kraka Field”. In: Marine and Petroleum Geology 112. Published,
Appendix B. issn: 0264-8172. doi: https://doi.org/10.1016/j.marpetgeo.
2019.104065. url: http://www.sciencedirect.com/science/article/pii/
S026481721930501X
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A B S T R A C T

Oil and gas production of tight chalk reservoirs frequently rely on the presence of natural fractures, which
increases the effective permeability of the reservoirs. Fracture characterization is therefore imperative in opti-
mizing production schemes and obtaining economically viable recovery factors. Subsurface fracture character-
ization is often deemed challenging as the available data is typically of varying age and quality, and represents
different scales. We have developed an integrated workflow for fracture characterization in chalk to address
these challenges. The workflow is based on data from borehole images, cores and seismic. These data are ty-
pically available for most chalk (and hydrocarbon) fields. The interpreted borehole image dataset contains over
17 000 manual dip picks, ensuring a statistically viable base. A total of 150m of core is available from 3 wells.
The applied 3D seismic cube covers an 8×5 km hydrocarbon chalk field in the Danish North Sea.

In this workflow, the scale-gap between the data sets is bridged by the introduction of two ant-tracked
attribute volumes, which display structural trends below the resolution of amplitude seismic. Further insight into
the intricacy of subsurface fracture systems is obtained from fracture density logs, which provide an opportunity
to study spatial distribution of fractures as well as a qualitative measure of fracture clustering. Cumulative
density distribution plots and calculation of the variation coefficient of fracture spacing provide a more quan-
titative analysis of the fracture distribution.

The workflow, presented here in a step-by-step manner, is a general approach applied to data from the Kraka
Field of the Danish North Sea. In the Kraka Field, the usage of this integrated approach shows that the fracture
pattern in this region is more complex than previously suggested; probably controlled by the regional maximum
horizontal stress and salt movements.

1. Introduction

Chalks typically represent high porosity - low permeability re-
servoirs, in which natural fractures are essential for hydrocarbon pro-
duction (Koestler and Reksten, 1992). Knowledge of these fracture
systems is often used strategically in well planning and in IOR and EOR
efforts. Descriptions and models of natural fracture systems allow for
simulation of flow and flow patterns in reservoirs, which in turn helps
in understanding the quality and amount of hydrocarbon reserves.
Natural fractures define the communication in reservoirs, which is the
determining factor for well-placing decisions and setup of production
schemes for IOR technologies (e.g. water flooding) and EOR technolo-
gies (e.g. smart water/chemical flooding).

Accurate predictions of natural fracture systems require an under-
standing of the controls on fracture orientations and distributions in an

area (Fernø, 2012). We have developed a workflow to correlate struc-
tural features at different scales, based on borehole image-, core- and
seismic data. The applied seismic data includes an amplitude volume
and two ant-tracked volumes. High resolution lineations mapped on the
two ant-tracked cubes (generated through a variance cube and through
RGB-image processing of the 3D seismic volume, respectively) enables
detection of smaller-scale lineations below the resolution of conven-
tional seismic, thus bridging the scaling-gap between well and seismic
data. Spatial distributions and fracture clustering is considered using
fracture density data.

The suggested workflow has been applied to the Kraka Field. The
Kraka Field, an asymmetric anticlinal structure located in the Danish
Central Graben (Fig. 1), was chosen as a test-case as it is a relatively
simple structure with a manageable amount of data. The applied data
was provided by Maersk for the purposes of this research project. Kraka

https://doi.org/10.1016/j.marpetgeo.2019.104065
Received 9 November 2018; Received in revised form 23 September 2019; Accepted 27 September 2019

∗ Corresponding author.
E-mail address: talama@dtu.dk (T.M. Aabø).

Marine and Petroleum Geology 112 (2020) 104065

Available online 04 October 2019
0264-8172/ © 2019 Elsevier Ltd. All rights reserved.

T

144 B Journal Papers



is produced mainly from the Danian Ekofisk Formation but also from
the Maastrichtian Tor Formation, both of which are naturally fractured
chalk reservoirs (Jorgensen and Andersen, 1991).

Combining the three aforementioned data types in an integrated
workflow allows for the extrapolation of fractures away from the
borehole, increasing our holistic understanding of the natural fracture
distributions, in this case of the Kraka Field. Using this integrated ap-
proach we are able to evaluate orientations of lineations from well-to
seismic scale, allowing for structural modelling based on a geological
conceptual model.

Our results will serve as inputs into a discrete fracture network
model (DFN) founded on geomechanical principles for fracture propa-
gation, which will improve future well planning and EOR activities in
the area.

2. Geological setting

Prior to applying the workflow, the geological setting of the Kraka
Field was considered.

The Kraka anticline was induced through halokinesis. Initiation
started during the Triassic and continued to move during the remaining
Mesozoic (Rank-Friend and Elders, 2004). The structure stretches more
than 8 km along its long axis and approximately 5 km along its short

axis (Rasmussen et al., 2005). The lithology in Kraka varies between
pure chalk and marly chalk, with varying amounts of chert layers and
nodules. Cores from the field show localized staining which is cyclic
and often associated with the chert. On well-scale, three main structural
features have been identified in Kraka. Large, open fractures with
slickensides are abundantly observed throughout the core data. These
fractures commonly terminate in clay rich layers. Smaller, chert-asso-
ciated fractures occur frequently within the Ekofisk Formation and on
occasion within the Tor Formation. Stylolite-associated fractures, which
is predominantly observed in the Tor formation, are perpendicular to
the pressure solution seems and are typically< 25mm high.

Both reservoir units are characterized as tight. Porosities are in the
range of 20–35% and permeabilities range from 3mD to< 1 mD
(Klinkby et al., 2005). Effective matrix permeabilities in the field are
significantly enhanced due to the presence of these natural fractures.
The tectonic fractures (shear and extensional) are the main perme-
ability enhancers. Smaller fractures associated with cherts and stylolites
may however be important for local permeability enhancement
(Jorgensen and Andersen, 1991).

It has previously been concluded that tectonic fracturing in the
Kraka chalk may be understood as simple dome related fractures,
possibly dominated by a tangential system (Jorgensen and Andersen,
1991). It was also suggested that Kraka fractures occur in swarms: a

Fig. 1. Location of the Kraka Field, indicated by the red square, on a structural elements map of the Danish Central Graben (modified and edited from Møller and
Rasmussen (2003)). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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production logging tool from a horizontal wellbore indicated that only
4 of the 17 perforation intervals in that well contributed 94 %of the
fluid production (Jorgensen and Andersen, 1991). The potential ex-
istence of fracture swarms is further addressed through our workflow.
The results of our data analyses indicate that the Kraka fracture pattern
is more complex than previously suggested with a primary set of frac-
tures controlled by the regional maximum horizontal stress as well as a
secondary set of dome-related fractures, associated with halokinesis.

3. Workflow: data availability, consistency and correlation

The natural fracture pattern of the Kraka Field was interactively
characterized through borehole images (BHIs) and cores, prior to
structural correlation with seismic data. The fracture characterization
effort was primarily focused on the lateral fracture distribution, as the
majority of Kraka wells are horizontal. Main emphasis has been put on
the Ekofisk section, as it constitutes the primary target of these well-
bores. Seismic was used to map faults and fracture zones away from the
borehole and to identify regional structural trends.

The full integrated approach is schematically shown in Fig. 2.
Specific details of each step are given in the following subsections.

3.1. BHI processing

The applied borehole image data was acquisitioned in wells drilled
in the time period between 1989 and 1997. Microresistivity data in
Formation MicroScanner (FMS)- or Formation MicroImager (FMI)
quality was available in seven wellbores. Three wellbores surveyed by
measurement while drilling technology were excluded from this study
due to poor data resolution.

In the first step of the workflow, the microresistivity data were
manually processed in Techlog, following the Schlumberger standard
outline, illustrated in Fig. 3.

Of the wells surveyed by FMS and FMI tools, one is vertical, one is
deviated at approximately 70°at reservoir level and five are horizontal
(Table 1).

Compared to newer image data, the BHIs provided from the Kraka
Field are of relatively poor image quality. Moreover, internal image
quality variations often occur within single well sections. The latter is
largely due to tool sticking, artificial signals and key seating, which is
observed in most borehole images from the Kraka Field. Chalk sections
directly below chert bands have been particularly hard to resolve, as the
chert bands do not have planar surfaces and so cause errors in the pad

alignment stage of processing. The cherts, being highly resistive com-
pared to the chalk, are in turn well resolved. Consequently, so are chert
associated fractures.

3.2. BHI interpretation

The reservoir chalk is characterized by internal non-planar re-
sistivity contrasts (that are not an expression of bedding features),
which may confuse automatic dip-picking algorithms and lead to in-
correct picks. All images have therefore been manually interpreted
according to dip-picking principles for horizontal wellbores.

The more than 17 000 interpreted dip picks were subsequently
subjected to structural dip removal (with respect to top reservoir).
Alonghole fracture densities were calculated, and then corrected for
fracture and wellbore orientation using the Terzaghi correction
(Terzaghi, 1965; Peacock et al., 2003). This corrects for the sampling
bias due when the fractures are near parallel to the wellbores, and al-
lows us to compare the true density of fracture sets with different or-
ientations. This is important in the case of Kraka since all wells are
drilled from a single platform located in the centre of the anticline, and
hence form a radial pattern (Fig. 4). Moreover four of the seven wells
are drilled in a NW-SE direction, perpendicular to the seismically
mapped faults. It is therefore essential to compare the true densities of
the different fracture sets to determine the main structural controls on
fracture orientation.

3.3. Core to BHI correlation

The image interpretation scheme was developed through interactive
evaluation of core data in the second- and third step of the workflow.
Cores were available for three of the BHI-surveyed well sections (wells
1,2 and 7). Depth matching between borehole images and cores was

Fig. 2. Integrated workflow.

Fig. 3. Processing of BHI data.

Table 1
Summary of studied BHI sections.

Well Orientation Tool Length (m)

Well 1 Horizontal FMS 691
Well 2 Deviated FMS 730
Well 3 Horizontal FMS 1987
Well 4 Horizontal FMI 1704
Well 5 Horizontal FMI 2391
Well 6 Horizontal FMI 1681
Well 7 Vertical FMI 205
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enabled by chert occurrences. Since the cherts are highly resistive
compared to the reservoir chalk, they are easily identifiable on BHIs
across the field. In the absence of a chert layer or nodule, core-to-log
calibration is based on fractures. Depth shifts along wells vary by up to
8 ft. Relative fracture orientations measured in core have been reor-
iented, depth shifted and plotted alongside image fracture-picks in the
applied software.

Correlation between borehole images and cores is considered highly
advantageous because:

1. BHI and core data are complementary. Borehole images provide true
orientations and survey the reservoir in-situ, so we can differentiate
open and closed fractures under reservoir conditions. The advantage
of core is that we can identify smaller-scale stylolite associated
fractures that are not detectable on images because the image re-
solution is about 1–2mm.

2. In the BHI data from the Kraka Field, sinusoids representing bedding
(chalk and marl) are continuous across borehole images. Most
fractures are however only represented by partial sinusoids, either
because they are short or because they are only partially open or
cemented. Comparison with core data, when available, is imperative
in determining which partial signals should be picked. Lessons
learned from cored wells are transferable to BHI-surveyed wells
without core.

3. In terms of azimuth, the dip-picking tools in the applied software (as
in most commercial packages) are highly sensitive to small
“tweaks”. This means that the orientation given by tadpoles can
change drastically depending on how the partial fracture signal is
picked. Where there is ambiguity, we have picked partial sinusoids
to be consistent with nearby full sinusoids on borehole images, and
calibrated against the fractures in core, where possible.

There is a general good correspondence between orientations of
fractures identified in core and fractures picked on borehole images. An
example of this is shown in Fig. 5, which shows a logged core interval

(a) with corresponding BHI section (b) in the vertical wellbore.
In this case, the core contains two natural fractures, represented by

blue tadpoles in the borehole image. These are recognised as natural
fractures in core by the presence of slickensides. In the core section,
both fractures are open. However, the logged fractures coincide with
one open (conductive) and one closed (resistive) fracture picked on the
image section. Here, the image interpretation is considered reliable as
BHIs represent the in-situ reservoir conditions. The closed fracture
observed on borehole images could possibly have been opened during
the coring process itself. The dip and azimuth of both fractures iden-
tified in BHI match the orientation of the fractures logged in core within
12°.

In general, dip angles of core- and BHI fracture picks fit to within
9°or less, while dip azimuths are associated with a higher degree of
uncertainty. Small discrepancies are to be expected, as core must be
reoriented manually to calculate true orientations. Therefore fracture
orientations from BHIs are considered the most reliable, while the
presence and type of fractures can be identified in the core.

Core-fracture densities are 44% and 36% higher than BHI-fracture
densities in wells 1 and 2, respectively (Fig. 6). Stylolite occurrences in
the chalk accounts for some of the disparity, as they are not resolved in
the images. Moreover, fractures located in bioturbated zones and well-
parallel fractures are difficult to distinguish in the BHIs. The remaining
discrepancy is linked to the quality and resolution of images. The
fracture density percentage for well 7 has not been computed, as there
are few data points to compare.

3.4. Initial fracture data analysis and QC

The true orientations of the fracture picks in each well were plotted
on upper hemisphere stereonets, and these were used to classify frac-
tures into sets on the basis of orientation. The fracture strikes were then
plotted on rose diagrams drawn over the stereonets, after applying the
Terzaghi correction, to enable direct comparison of the fracture den-
sities in the different sets, on a well by well basis.

Fig. 4. Well pattern of Kraka wells included in this study on top reservoir depth map.
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3.5. Well-by-well and field scale evaluation

Alonghole fracture density logs were generated, with Terzaghi
correction applied to individual fractures, to study the spatial dis-
tribution of fractures, and determine qualitatively whether they are
clustered or evenly distributed. More quantitative analysis of the frac-
ture distribution was carried out using cumulative density distribution
plots, and by calculating the coefficient of variation of fracture spacing.

The cumulative fracture spacing distribution can be plotted by

measuring the distance between each pair of adjacent fractures along a
wellbore (without correcting for orientation), ranking them in order,
and plotting the results on a cumulative density distribution diagram.
The cumulative density distribution with respect to fracture spacing is
analogous to the cumulative density distribution with respect to frac-
ture displacement or fracture length (see e.g. Marrett and
Allmendinger, 1991, 1992; Westaway, 1994; Marrett, 1996): a straight
line on a log-linear plot indicates a random fracture distribution (Olson
et al., 2001), while a straight line on a log-log plot indicates a power

Fig. 5. Core log (a) and Core-to-BHI correlation (b) of fractured interval in the vertical wellbore. The core to log shift is approximately 2.5 ft, based on the chert band.
The section of core shown corresponds to the section of borehole image log from 6756.0 to 6759.0 ft (as indicated by the black stippled lines).
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law distribution with clustering of fractures and may indicate fracture
swarms (Gillespie et al., 1993, 2001).

The coefficient of variation of fracture spacing Cox and Lewis
(1966) provides a more straightforward method to quantify the degree
of clustering. The coefficient of variation R is defined as the standard
deviation of fracture spacing divided by the mean fracture spacing:

=R
Standard deviation of fracture spacing

Mean fracture spacing (1)

A ratio R > 1 implies fracture clustering and the presence of
swarms. A ratio of R=1 implies a random fracture distribution A ratio
of R < 1 implies regularly spacing fractures.

The fracture distribution can tell us something about the mechan-
isms of fracture formation. In particular a clustered fracture distribution
often develops when the stress anomaly develops around the tip of a
propagating fracture, promoting the growth of nearby fractures, in a
similar manner to the process zone often observed around igneous
dykes (Olson, 2003). A modelling study by Olson (2004) shows that this
is often the result of critical fracture propagation in a brittle material.

3.6. Well to seismic correlation

Fracture picks from BHIs and cores were subsequently compared to
a structural framework derived from the amplitude seismic volume,
provided by Maersk, as well as to two ant-tracked structural models in
step 6 of the workflow. The seismic amplitude cube (in depth), acquired

in 2012, has a vertical resolution in the order of 40m (sampling rate of
4ms). The ant-tracked volumes enhance subtle faults and fracture zones
that are below this vertical resolution. The ant-tracking algorithm sys-
tematically analyzes a seismic input cube – mimicking the swarm in-
telligence of ants (Pedersen et al., 2002). Here, a large number of agents
(ants) are distributed in the volume. Each ant propagating through the
cube is programmed to detect continuous structural lineations. Con-
fidence levels are assigned depending on the length and width of the
path of segments.

The first ant-tracked volume was generated in Petrel according to
the following procedure (Fig. 7):

1. Cropped the original amplitude cube to speed up calculation.
2. Generated a structural smoothing/median filter cube to increase

horizontal continuity and to pick out the more consistent structural
features. The optimal degree of smoothing was achieved through
adjusting the attribute parameter and observing its effect on the
smoothing cube (in real time) prior to realization.

3. Extracted the variance/chaos cube from the smoothing cube to
highlight discontinuities. The variance cube software is based on
wavelet analysis. It calculates the direct measurement of dissim-
ilarity rather than the inferred similarity of seismic data, producing
sharper, more distinct results than those with traditional coherency
techniques (Schlumberger, 2006).

4. Ran ant-tracking algorithm to enhance discontinuities.

Fig. 6. Corrected fracture intensity logs of core-fractures and BHI-fractures in the cored intervals of wells 1 and 2 (scale 1:700). Fracture densities range from 0 in
purple to 5 in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Workflow for generating ant-tracked volume
from the seismic depth cube of the Kraka Field in
Petrel.
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The second ant-tracked volume was generated in eXchroma and
Petrel according to the following procedure:

1. Cropped the original amplitude cube to speed up calculation.
2. Applied the structurally sharpened red-green-blue method, which

uses the simultaneous rendering of multiple depth slices in con-
tinuous RGB color to highlight geophysical heterogeneities re-
presentative of geologic features, to the amplitude cube (Laake,
2015). The result is an image processed photo-style cube.

3. Ran ant-tracking algorithm to enhance discontinuities.

The vertical resolution of the wavelet based ant-tracked volume is
24ms (7 times the sampling rate). In the RGB ant-tracked cube, the
vertical resolution is 12ms (3 times the sampling rate). The latter cube
has therefore been preferentially used in this study (Fig. 8).

3.7. Correlation analyses

The interpretation of structural features along the well bore on
seismic scale was carried out on an opacity mix of the ant-tracked vo-
lume and the seismic amplitudes (Fig. 9). This mixed view enables a
focused interpretation of localized features in the seismic data. Also, we
avoid misclassification of noise or acquisition artifacts. The opacity of
the ant-track overlay was adjusted dynamically to enable the best in-
terpretation possible.

The structural interpretation of the seismic data was done in-
dependently from the fracture interpretation of the BHIs. This reduces
bias in the interpretation and “correlation finding” when looking at
mixed displays. “Correlation finding” is a bias in interpretive science,
where the interpreter has both displays open and finds feature in one
display because they know to expect a feature from the other display.

Dip- and azimuth values were averaged along the fault planes of
each interpreted fault to allow for direct comparison with well-scale
data in upper hemisphere stereonet projections in the seventh- and final

step of the workflow.

4. Workflow outcomes: well-scale fracture trends

4.1. Fracture densities and fracture swarms

Fig. 10 shows the fracture orientations in the four NW-SE oriented
horizontal wells prior to- and after applying the Terzaghi correction for
borehole orientation. According to expectations, the rose diagrams for
uncorrected fracture strike are dominated by NE-SW striking fractures,
as fractures in this orientation will be preferentially intersected by the
boreholes. After correcting for orientation, however, the rose diagrams
largely remain unchanged, indicating that this reflects a real preferred
fracture orientation, and not just bias due to well orientation. However
in two of the wells (wells 3 and 4), the Terzaghi correction also reveals
another fracture set, striking NW-SE, that cannot be identified on the
uncorrected data. This suggests that multiple intersecting fracture sets
are present in these locations, as well as demonstrating that the Ter-
zaghi correction is correctly revealing the true preferred fracture or-
ientations.

The uncorrected fracture orientations from the two wells oriented
approximately north-south also show a majority of the fractures striking
east-west (Fig. 11). In these wells, however, correction for wellbore
orientation significantly reduces the relative importance of this fracture
set, and reveals that the dominant fracture trend strikes north-south,
parallel to the wellbores (although there is still a population of east-
west fractures, so this location is likely to be characterized by multiple
intersecting fracture sets).

In the Terzaghi-corrected fracture intensity logs from the seven
wellbores, the fracture density and distribution varies between well-
bores (Fig. 12). Relatively high and uniform fracture densities are ob-
served in wells 4, 5 and 6. Mean fracture densities are lower in wells 1,
2 and 3, but the fractures in these wells appear more clustered, with
potential fracture swarms observed. The highest fracture density is
found in the vertical well 7 and the lowest fracture density occurs in the
horizontal well 3.

The fracture distribution was investigated quantitatively by plotting
cumulative density distribution plots for fracture spacing, and calcu-
lating the coefficient of variation for the fracture spacing in each well.
Results were relatively consistent between all investigated wells.
Generally, smaller fracture spacings (0.1–10 ft) follow a straight line on
the log-log plot, indicating a close-to Power law distribution, while
larger spacings (more than 10 ft) follow a straight line on the log-linear
plot, indicating a close-to random distribution (Fig. 13). We can also see
a clear distinction between wells 1, 2 and 3, characterized by high

Fig. 8. Comparison of the wavelet-based (left) and the RGB-based (right) ant-tracked volumes.

Fig. 9. Amplitude-cube over the Kraka Field with the RGB volume as opaque
overlay, used for seismic interpretation.
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overall fracture densities (they intersect the y axis at high values) and
high power law exponents (steep density distribution curves), and wells
4, 5, and 6, characterized by low overall fracture densities and low
power law exponents.

The values of the mean, standard deviation and coefficient of var-
iation R for the fracture spacings in each well are summarized in
Table 2. In case of a clustered Power law distribution, the standard
deviation should be smaller than the mean, so R > 1. In a perfectly
random distribution, the standard deviation equals the mean, so R=1.

This data confirms the observations from the fracture intensity
plots. The mean fracture spacing is much higher in wells 1, 2 and 3 than
in wells 4, 5 and 6, indicating a lower fracture density. As the coeffi-
cient of variation R > 1 in all wells, some clustering of the fractures
occurs in all Kraka wells, but the distribution in wells 1, 2, and 3 is more
clustered than in wells 4, 5 and 6. However the coefficient of variation
R is still quite low in most wells (and is not much higher in wells 1 and 2
than in wells 4 and 5), suggesting a significant random component in

the distribution of fractures in all wells. The greatest clustering occurs
in well 3, which is the well with the lowest fracture density, i.e. the
highest mean spacing.

The fracture distribution and the coefficient of variation in vertical
well 7 is in good correspondence with that observed in the horizontal
wells. This suggests a fairly isotropic fracture distribution in Kraka.
However, this inference is based on just one horizontal well, and must
therefore be treated with caution.

4.2. Fracture sets

The majority of fractures observed are steeply dipping: 0.24% of the
BHI-fractures are shallow dipping (< 30°), 24.62% of the fractures have
intermediate dip values (30–70°) and 75.14% are steep (70–90°) (al-
though these figures are not corrected for orientation relative to the
wellbores).

Fig. 14 shows upper hemisphere stereonets and orientation-

Fig. 10. Uncorrected and Terzaghi-corrected strike-rose diagrams from NW-SE oriented wells. Note that the fracture pole data, shown as dots on the stereonets
(upper hemisphere), is uncorrected in both instances.

Fig. 11. Uncorrected and Terzaghi-corrected strike-rose diagrams from N–S oriented wells. Note that the fracture point data, shown in the stereonets (upper
hemisphere), is uncorrected in both instances.
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corrected rose diagrams for the fracture data from each well, broken
down by stratigraphic unit. Data from the Danian Ekofisk formation is
highlighted in green, and data from the Maastrichtian Tor formation is
highlighted in red.

We have identified two main fracture trends in the Danian Ekofisk
section. The first is a dominant NE/NNE trending regional fracture set,
which strikes parallel or near-parallel to the maximum horizontal stress
in the area. This main fracture trend is present in the Ekofisk intervals
of all horizontal/deviated wellbores and has been confirmed by core
data (from wells 1 and 2). Due to data constraints, the vertical fracture
distribution of the Kraka Field was primarily studied in well 7.
Although the data foundation is insufficient, results from this well in-
dicate that the dominant NE/NNE trend of the Ekofisk formation is

Fig. 12. Terzaghi-corrected fracture intensity logs of wells 1–7 (scale 1:10 000).

Fig. 13. Fracture spacing distributions for the seven Kraka wells, shown on a log-log plot (left) and log-linear plot (right).

Table 2
Standard deviations σ, mean values μ, and coefficient of variation R of the
fracture spacing data from the seven Kraka wells.

Well σ μ R

Well 1 8.3 4.2 2.0
Well 2 9.2 4.4 2.0
Well 3 21.4 7.2 3.0
Well 4 2.7 1.4 1.9
Well 5 2.2 1.2 1.9
Well 6 1.7 1.1 1.5
Well 7 4.5 2.9 1.5
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vertically continuous.
The secondary fracture set consists of fractures striking parallel and

perpendicular to the contours of the Kraka Dome. The orientation of
these fractures varies between wells, depending on their location on the
dome. This fracture set is thought to have formed during salt move-
ments, and it is expected to follow the strain evolution of the Kraka
chalk. Because of the positions of wells 5 and 6, the two fracture sets in
cannot be distinguished on the basis of orientation in these wells (the
dome contours are parallel to the NE/NNE regional trend).

The NNE/NE trending regional fracture set continues into the Tor
Formation of wells 2, 6 and 7. However there is much more scatter in
the Tor orientation data than in the Ekofisk data. The scattering may be
due to varying local stresses during salt movements, however there is
insufficient data from the Tor Formation to determine the fracture
pattern with confidence.

5. Workflow outcomes: seismic-scale fault trends

The orientation data for the lineations observed on RGB ant-tracked
seismic data, and for the large-scale faults interpreted on amplitude
seismic are shown in Fig. 15. The ant-tracked structural model contains
25 lineations along the well trajectory. The majority (16) of these
lineations strike NNE/NE. Of the 32 large-scale faults interpreted on
amplitude seismic, 18 are oriented in a NE direction, while only 3 faults
strike NNW. This indicates that the NNE trend is representative for
smaller-scale lineations, at the limit of resolution of amplitude seismic.
The rose diagram for the ant-tracked lineations shows higher variance
than the large-scale faults. This implies greater variation in the

orientation of small scale features in comparison to large-scale fault
trends, which we would expect.

Overall the NE/NNE trend of the lineations and the large-scale faults
matches the orientation of one of the main sets of fractures observed on
borehole images. The main NE/NNE fracture trend can therefore be
correlated from wellbore-scale fractures to local lineation scale and to
field-wide fault scale (compare Figs. 14 and 15). This suggests that
many of the wellbore-scale fractures are genetically related to the
seismic-scale faults, and formed in response to a regional stress regime.
The resulting fracture and fault set covers a range of scales, from small
fractures with lengths ¡1m up to seismic-scale faults with lengths of
several km. The increased variance in orientation of the small-scale
features may be partly due to uncertainty of the interpretation, and
partly due to small-scale local variations in stress regime, for example
around larger faults or around the salt diapir.

There are of course many more fractures observed on borehole
images than lineaments observed on the RGB ant-tracked seismic data,
and most of the individual fractures observed on the borehole images
are of a much smaller scale than the lineaments. There is therefore no
direct correspondence between fractures on borehole images and
lineaments observed on the ant-tracked seismic data. Nor do we see a
clear correlation between the density of fractures on borehole images
and the location of the lineaments (Fig. 16). This may partly reflect
variation in borehole image quality: it was not possible to pick so many
fractures in areas of poor image quality.

However, if we filter the fractures from borehole images to only
include the resistive fractures, we do see a clear correlation in many
wells, between both the distribution and the orientation of resistive

Fig. 14. Fracture point data and corrected rose diagrams in wells 1–7, plotted after unit on the top reservoir depth map.
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fractures and the seismic lineaments. This is particularly clear for the
NW-SE oriented horizontal wells 3, 4, 5 and 6 (Fig. 17). This suggests
that the resistive fractures observed on borehole images may be more
likely to represent or be associated with larger-scale structures than the
conductive fractures. This is quite plausible, as resistive fractures are
filled with some resistive material, which may be fault gouge or cement
precipitated from a fluid travelling through the fracture. Thus we would
expect faults with significant displacement, or fractures associated with
such small faults (e.g. in the damage zone), to appear as resistive
fractures on borehole images. Conductive fractures, by contrast, could
mostly represent a distributed background population of small, unfilled
cracks.

6. Summary and conclusions

We have established an integrated workflow for correlation of
structural features at different scales in chalk reservoirs. The workflow
bridges the scale-gap between well-scale and seismic data sets, and has
increased our understanding of the natural fracture system in our test
case, Kraka. Such knowledge can be used strategically in optimizing
production schemes and obtaining sustainable recovery factors. The
combination of BHI- core- and seismic data allow for the extrapolation
of fractures away from the borehole.

An obvious next step in this workflow is upscaling, fracture mod-
elling and evaluation of current findings through fluid simulations.
Such simulations, verified through production data, might provide
feedback to the fracture characterization effort, further improving the
model (closed loop).

Application of our approach in the Kraka Field indicate that:

Fig. 15. Rose diagrams of structural lineations interpreted on the RGB ant-tracked volume (left) and the amplitude volume (right).

Fig. 16. Comparison of fractures interpreted on borehole images, shown by
coloured disks, and lineations observed on RGB ant-tracked seismic data, for
wells 3 and 6. The left hand pictures show all fractures interpreted on borehole
images, with conductive fractures shown by pink disks and resistive fractures by
blue disks, while the right hand pictures show only the resistive fractures. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 17. Comparison of the resistive fractures interpreted on borehole images,
shown by blue disks, and lineations observed on RGB ant-tracked seismic data,
for wells 3, 4, 5 and 6. All wells are shown looking down from above. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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1. A large portion of extensional and chert-associated fractures iden-
tified in core are distinguishable in borehole images. Stylolites,
stylolite-associated fractures, fractures located in bioturbated zones
and well-parallel fractures are however difficult to differentiate in
the BHIs.

2. Borehole images are imperative in distinguishing cemented from
open fractures, as cemented fractures may be opened during the
coring process. BHIs thus increase our ability to constrain fluid flow
along the fracture network.

3. Extensional and chert-associated fractures are commonly re-
presented by partial sinusoids in BHIs, suggesting they are either
short or only partially open or cemented.

4. Manual dip-picking was deemed requisite because of:
- The large portion of fractures represented by partial sinusoids.
- Relatively poor image quality (compared to newer BHI data).
- Internal resistivity variations, which may “confuse” automatic dip-
picking tools.

5. For the ant-tracked algorithm, higher vertical resolution can be
achieved through RGB image processing, compared to wavelet
based extraction of structural features. Both ant-tracked volumes
display structural trends that are below the resolution of amplitude
seismic.

6. Fractures picked on BHIs correlate to large-scale regional trends and
to features picked on ant-tracked seismic data. This strengthens the
case of a consistent regional stress field that scales down to local
stresses observed at the BHI and core scale. We can therefore ex-
trapolate fractures away from the wellbores and calibrate 3D models
(e.g. discrete fracture network models).

In our test case, the results of the workflow show that the Ekofisk
Formation of the Kraka Field is characterized by steep fractures striking
NE and NNE, parallel or near-parallel to the maximum horizontal stress
in the area. Fractures in Kraka occur as swarms and as isolated features.
Moderate fracture clustering occurs in the majority of horizontal wells,
as well as in the vertical well. The greatest tendency for fracture swarm
occurrence is observed in the horizontal well with the lowest associated
fracture density.

The main fracture trend, established from borehole images and core,
is present in the Ekofisk sections of all horizontal/deviated wellbores
and has been confirmed by core data. Results from the vertical well 7
indicate that the dominant NE/NNE trend of the Ekofisk Formation is
vertically continuous. A secondary fracture set of fractures striking
parallel and perpendicular to the contours of the Kraka Dome was
identified. The orientation of these fractures varies between wells, de-
pending on their location on the dome. This fracture set likely devel-
oped during salt movements and is expected to follow the strain evo-
lution of the Kraka chalk.

The main NNE/NE fracture trend can be correlated from well scale
to ant-tracked scale. Faults mapped on amplitude seismics can also be
identified in the ant-tracked cube. In the amplitude model, faults
mainly trend NE, indicating that the NNE trend is representative for
smaller-scale lineations (well scale to ant-tracked scale).

This integrated study proves invaluable in testing assumptions in
building fracture models and the subsequent upscaling process and will
be useful for validating a geomechanically based DFN for the Kraka
Field.
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reservoir dynamic property variations during a period of production, directly from
four‐dimensional seismic data in the amplitude domain. We employ a deep neural net-
work to invert four‐dimensional seismic amplitude maps to the simultaneous changes
in pressure, water and gas saturations. The method is applied to a real field data
case, where, as is common in such applications, the data measured at the wells are
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synthetic data. Training on synthetic data offers much freedom in designing a training
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the inversion results. To define the best way to construct a synthetic training dataset,
we perform a study on four different approaches to populating the training set making
remarks on data sizes, network generality and the impact of physics‐based constraints.
Using the results of a reservoir simulation model to populate our training datasets, we
demonstrate the benefits of restricting training samples to fluid flow consistent com-
binations in the dynamic reservoir property domain. With this the network learns
the physical correlations present in the training set, incorporating this information
into the inference process, which allows it to make inferences on properties to which
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of applying regularization techniques such as adding noise to the synthetic data for
training and show a possibility of estimating uncertainties in the inversion results by
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ABSTRACT
In this work, we tackle the challenge of quantitative estimation of reservoir dynamic
property variations during a period of production, directly from four-dimensional
seismic data in the amplitude domain. We employ a deep neural network to invert
four-dimensional seismic amplitude maps to the simultaneous changes in pressure,
water and gas saturations. The method is applied to a real field data case, where,
as is common in such applications, the data measured at the wells are insufficient
for properly training deep neural networks, thus, the network is trained on synthetic
data. Training on synthetic data offers much freedom in designing a training dataset,
therefore, it is important to understand the impact of the data distribution on the
inversion results. To define the best way to construct a synthetic training dataset, we
perform a study on four different approaches to populating the training set making
remarks on data sizes, network generality and the impact of physics-based constraints.
Using the results of a reservoir simulation model to populate our training datasets,
we demonstrate the benefits of restricting training samples to fluid flow consistent
combinations in the dynamic reservoir property domain.With this the network learns
the physical correlations present in the training set, incorporating this information
into the inference process, which allows it to make inferences on properties to which
the seismic data are most uncertain. Additionally, we demonstrate the importance
of applying regularization techniques such as adding noise to the synthetic data for
training and show a possibility of estimating uncertainties in the inversion results by
training multiple networks.

Key words: Reservoir geophysics, Time lapse seismic, Inversion, Machine learning.

INTRODUCTION

Estimating dynamic reservoir property change during a period
of field production from four-dimensional (4D) seismic data
has been a challenge and ambition for geoscientists in the oil
and gas industry. These estimates are appealing for reservoir

†Currently at Aker BP, Stavanger, Norway
∗E-mail: gac2@hw.ac.uk

monitoring and history matching purposes, because 4D seis-
mic data offer information about reservoir property changes
across the whole reservoir, at a specific production time. It
complements well production information, which is spatially
sparse but temporally dense. 4D seismic data provide infor-
mation for the space between wells. But this information is
encoded into the measured seismic amplitudes. So, we need to
comprehend how the changes occurring inside the reservoir
affect the seismic amplitudes we measure.

2164 © 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.
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Along field production, the reservoir goes through con-
stant change in properties such as fluid saturation, pore pres-
sure, temperature, or even to changes in the reservoir rock
architecture itself due to compaction and dissolution. The
change in each of these properties has an independent impact
on the seismic data, but they seldom act alone. Water injec-
tion for example leads to an increase in water saturation and
an increase in pressure in the vicinities of the injector well.
The observed 4D seismic amplitudes are a superposition of all
the effects caused by the simultaneous variations in any dy-
namic property. The challenge is in quantitatively estimating
the simultaneous contribution of each reservoir property to
the final observed data. As is common in geophysical inver-
sion, this is an underdetermined problem, prone to ambigui-
ties and highly uncertain. Seismic information is limited and
cannot provide enough independent measurements to charac-
terize the whole reservoir state.

The information present in the variation of 4D ampli-
tudes with offset (4D AVO) is crucial for quantifying multi-
ple simultaneous reservoir property changes.We can highlight
two major theoretical studies that use analytical solutions to
show the possibility of quantifying the changes in both pres-
sure and saturation directly from the 4DAVOdata. In the first,
Landrø (2001) follows a linearization of Smith and Gidlow’s
approximation to the reflection coefficient equation (Smith
and Gidlow, 1987) to analytically derive a linear relation link-
ing the 4D AVO gradient/intercept seismic attributes to the
changes in two reservoir properties, pressure andwater/oil sat-
uration. The derived equations depend on rock physics-related
parameters that can be estimated using laboratory measure-
ments. In a different approach, Alvarez and Macbeth (2014)
follow a linearization of the Aki and Richards’ (1980) ap-
proximation to the reflection coefficient equation to derive an
angle-dependent linear relation between the changes in pres-
sure and oil/water saturations and the 4D seismic amplitudes.
This relation also depends on reservoir petro-elastic param-
eters. Additionally, MacBeth et al. (2006) developed a data-
based inversion method that assumes a linear link between
any 4D seismic attribute and the changes in pressure and sat-
uration. The parameters in the equations here are not directly
related to any petro-elastic property, instead, they need to be
previously calibrated using repeated well measurements, in a
similar manner as the way neural networks are trained us-
ing direct observations. In this study, the authors run a prin-
cipal component analysis to determine the best 4D seismic at-
tributes for the simultaneous quantification of pressure and
saturation changes (Floricich, 2006). The authors conclude
that the 4D AVO related attributes contribute the most to the

inversion process and that the separation of effects could not
be done without this AVO information.

Other methods take advantage of the 4D AVO informa-
tion in many domains (impedance, gradient/intercept, seis-
mic amplitudes) to invert for the changes in different reser-
voir properties such as pressure, compaction, and the satu-
rations of water and gas (Trani et al., 2011; Coleou et al.,
2013; Corzo et al., 2013; Davolio et al., 2013; Omofoma,
2017; Wong, 2017; Côrte et al., 2019). Most of these stud-
ies stress that there is a good deal of ambiguity and uncer-
tainty in the solutions, thus any available external informa-
tion should be used to constrain and/or regularize the inver-
sion process (Blanchard and Thore, 2008; Blanchard, 2012).
External information may come from the wells, as inMacBeth
et al. (2006) and Coleou et al. (2013), where the authors use
well-injected and produced volumes as global constraints to
the saturation results. Reservoir simulation models can also
be used to provide information to guide the inversion results.
Davolio et al. (2013) and Omofoma (2017) use multiple real-
izations of a reservoir simulation model to define local hard
bounds, constraining the possible inversion results. Côrte et al.
(2019) use the results of a history matched simulation model
as local prior information in a Bayesian inversion approach
to regularize the solution and provide soft constraints to the
inversion results. Additionally, 4D seismic time-shift measure-
ments have also been used as a data-based source of informa-
tion in simultaneous inversion processes (Trani et al., 2011;
Thore and Hubans, 2012). In neural network solutions, we
do not have the possibility of applying direct constraints to the
inference process. Constraining the training dataset does not
guarantee constrained results either, as the network can ex-
trapolate beyond the training dataset. In this paper, we show
a few techniques that can be used in the construction of the
network architecture and training dataset that contribute to
regularizing and constraining the inversion results.

The construction of the training dataset is a critical step
that has great impact on the inversion results. Neural network
applications, as opposed to most of the mentioned studies, do
not rely on a physical model to establish the links between the
seismic and reservoir domains. Instead, they rely on a training
dataset composed of real input–output measurements, learn-
ing from it the non-linear relations that link inputs to outputs.
The training dataset defines the ‘physical’ model that is used
in the inversion, so it is important that it contains a good phys-
ical representation of the whole problem. In this case, a good
training dataset should represent the whole reservoir, contain-
ing the global variability on reservoir quality and the possible
dynamic property combinations.

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 68, 2164–2185
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Measured data to compose a training dataset can only
come from repeated well measurements at seismic acquisition
times. MacBeth et al. (2006) use well data in a model cali-
bration approach analogous to neural network training. The
authors pre-define a linear equational link between the seismic
and reservoir domains and iteratively calibrate the equations’
parameters to fit the data measured at a few well locations.
The main difference to neural network training is that deep
neural networks (DNNs) contain thousands more parameters
to be calibrated, leading to much more complex non-linear
relations. Consequently, deep neural networks need a much
larger amount of data for satisfactory training. Nonetheless,
Cao and Roy (2017) perform a synthetic study showing that
a neural network can also be trained successfully using only
information at well locations in a 4D reservoir property in-
version application. In real reservoir cases though, the neces-
sary repeated saturation well logs are not common and may
be lacking as whole, as is true in our case study. This type of
data is sparse, and it can be argued that it may be biased to
good reservoir areas, where the wells are located, and thus, in-
capable of representing the entire reservoir. More often than
not, just the well data are not sufficient to properly train a
neural network.

The alternative is to use synthetic data to help in the con-
struction of the training dataset. Ayzenberg and Liu (2014)
present a real reservoir case of a neural network application to
4D pressure and saturation inversion where the authors pop-
ulate their training dataset with reservoir simulation results
and real seismic observations at a few well-understood areas.
To extend their training dataset beyond the wells, they begin
a shift to synthetic data, but only on the reservoir domain,
keeping the real observed seismic data. Xue et al. (2019) use a
fully synthetic dataset to train their neural network to quantify
the changes in water saturation on a real reservoir case. The
authors make use of a wedge model as a static frame and ran-
dom sampling of the dynamic domain. More recently, Zhong
et al. (2020) presented a solution using convolutional genera-
tive adversarial networks to invert impedance change images
to reservoir property changes. Their convolutional approach
analyses full images, incorporating a spatial correlation aspect
into the inference results. For this reason, their synthetic train-
ing dataset is composed of full reservoir images, created by
running 300 reservoir simulations with varying static models.
Although convolutional networks are the state-of-the-art in
image analysis, they require an immense amount of previous
work to prepare synthetic training datasets

This paper presents a DNN application to inverting 4D
AVO seismic data into the simultaneous changes in three reser-

voir properties: pressure (�P),water saturation (�Sw) and gas
saturation (�Sg). It provides a quick and practical alternative
to more well-established inversion methodologies. As a good
platform for comparison, we present a Bayesian model-based
inversion approach applied to the same dataset in Côrte et al.
(2019), and a direct comparison of methods in Dramschet al.
(2019a).

The DNN is trained with synthetic data and applied to
real 4D seismic data from a North Sea field. We use a reser-
voir simulator to seismic modelling approach (Sim2Seis) to
construct four synthetic training datasets with the objective of
assessing the impact of the distribution of data in the training
dataset on the quality of the inversion results when applied to
a real 4D seismic dataset. The training datasets presented dif-
fer essentially on how much external physical information is
used to constrain and distribute the data.We show the value of
using physics informed and fluid flow consistent realizations
to create a realistic distribution of data in a synthetic training
dataset. Furthermore, we show the importance of training the
DNN on noisy synthetic data and the possibility of estimating
uncertainties in the results by training multiple DNN models
with varying signal to noise levels. With this we address the
problems of constraining the results with external physical in-
formation and regularizing solutions to avoid overfitting of
the training data and inverting noise.

F IELD AND DATASET

The field is composed of stacked turbidite channel and sheet-
like sands ranging from 5 to 30 m in thickness and 25–30%
in porosity. It is highly compartmentalized both laterally and
vertically due to faults and intercalating shales. The sand-
stone reservoir is present in four adjacent fault blocks. Faults
between blocks are sealing, creating four isolated segments
with varying water oil contacts (Fig. 1b). This whole struc-
ture dips and thickens to the north-west (Fig. 1a). Inside each
segment there are faults that may be sealing or not, leading to
a few isolated compartments and a highly complex geological
setup. Figure 1(c) shows the vertical sum of pore volume in the
reservoir, where we see clearly the channel features. Detailed
explanations of the depositional and stratigraphic evolution
of the region can be found in Ebdon et al. (1995) and Lamers
and Carmichael (1999).

The initial pressure in the field was only around 3 MPa
above bubble point pressure, making pressure maintenance
to prevent gas exsolution the main production strategy. To
maintain pressure, water injectors were drilled in the water
leg, on the west flank of the reservoir and in other select zones
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Figure 1 (a) Top reservoir horizon in time, (b) initial water saturation for reservoir sandstone, (c) pore volume for reservoir and (d) NRMS
measure of non-repeatability.

around the reservoir. Even so, production in this complex
compartmentalized structure led to areas with strong pres-
surization due to water injection into isolated compartments,
while other areas lack the pressure support and experience
gas release due to pressure depletion below bubble point
pressure. This creates a complex dynamic setup on top of an
already complex static framework. The challenge is to use
four-dimensional (4D) seismic data to quantitatively estimate
simultaneous changes in three dynamic properties: pressure
(�P), water saturation (�Sw) and gas saturation (�Sg)
across the reservoir. Both pressure and gas effects on seismic
data are non-linear, so the inversion method should deal
properly with the non-linearities due to changes in these two
properties.

The production strategy for this reservoir included regu-
lar 4D seismic acquisitions to aid in monitoring reservoir pro-
duction. In this paper, we present the results of the method ap-
plied to one of the manymonitor seismic acquisitions acquired
along the field life. The reservoir is thin to seismic standards,
being identified in a seismic quadrature section as one single

trough (Fig. 2). For this reason, all of the analysis is done in
map form. The seismic data used for inversion (Fig. 3) are the
time-lapse difference in the sum of negative amplitudes map
attribute (�SNA), extracted from quadrature seismic volumes
along the reservoir time window. This map extraction consists
of a vertical sum of the negative seismic amplitudes between
the top and bottom reservoir horizons (shown in Fig. 2) for
the baseline and monitor volumes, followed by a subtraction
of these two maps (monitor – baseline). Calculated time-shifts
are very small and show no correlation with the seismic am-
plitudes or production data, so unfortunately, they were not
useful. We use the pre-production seismic acquisition as the
baseline for generating the 4D seismic maps.

Figure 1(d) shows the normalized root mean squared
(NRMS) map extracted from the monitor-baseline pair used
for inversion. This was calculated in a 400 ms time win-
dow, 100 ms above the reservoir, so that it is away from any
production-related effects, but deep enough not to capture ac-
quisition footprints. NRMS is a measure of comparison be-
tween two seismic traces. When extracted in the overburden
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Figure 2 Sum of the negative amplitude (SNA) seismic map attribute for the baseline acquisition (left), extracted from the quadrature full stack
seismic 1996 baseline acquisition (right). Seismic section on the right shows the top and bottom reservoir horizons between which seismic
attributes are extracted.

region, NRMS maps are interpreted as a measure of non-
repeatability between two seismic acquisitions, providing a
relative estimation to the 4D seismic data quality across the
reservoir. NRMS values range from 0 to 2. Values of 0 repre-
sent perfectly correlated traces, 1 is observed for uncorrelated
random noise traces while 2 is observed for anti-correlated
traces. It is commonly presented as percentage values, with a
multiplication of the calculated NRMS values by 100. Calcu-
lated NRMS values range from 20% to 40%, except for the
undershoot zone, where repeatability is poor due to the pres-
ence of a production platform. The poor repeatability in this
area has a strong impact on the quality of the signal and, as
we will see, in the inversion results for this area.

To aid in interpretations, Fig. 4 shows vertical average
maps of the reservoir simulation results. In all maps in Fig-
ures 3 and 4, the colour scales are adjusted to represent soften-
ing effects as yellow–red and hardening effects in blue–green.
Softening effects are defined as those that are related to a

decrease in the bulk reservoir rock seismic impedance, while
hardening effects relate to increases in reservoir impedance.
For example, increase in water saturation lead to an increase in
reservoir impedance because water impedance is higher than
the oil impedance. Increases in gas saturation on the other
hand lead to decreases in the reservoir impedance because gas’
seismic impedance is lower that of the oil. For this reason, their
colour scales are inverted. This scheme simplifies the compar-
ison of reservoir property maps and seismic maps.

In Figs 3 and 4 some areas of interest are circled, show-
ing important features that we will use as guides for a qual-
itative assessment of the inversion results. This initial inter-
pretation is inherited from previous four-dimensional ampli-
tudes with offset (4DAVO) studies done for this dataset (Côrte
et al., 2019). Circled areas represent the reservoir property
that dominates each seismic anomaly. This depends on the
seismic sensitivity to changes in each property and on what
other property changes are occurring simultaneously. Seismic

Figure 3 Seismic data used for inversion: time-lapse change in the sum of negative amplitudes attributes extracted from the near, mid and far
stack.
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Figure 4 Vertical average maps of the results of the reservoir flow simulation for the changes in pressure (�P), water saturation (�Sw) and gas
saturation (�Sg).

amplitudes may be more sensitive to changes in some property
over other. If changes in both these properties are superposed,
the seismic effects related to one property will overcome and
dominate over the other. Uncertainties tend to be larger in the
properties that have their effects dominated by co-occurring
changes in other properties to which the seismic data are more
sensitive.

Zones circled in magenta (A, B, C, D and E) are well-
understood softening signals related to pressurization around
water injectors. In this case, the hardening signals related to
the increase in water saturation are overcome and dominated
by the stronger softening signals related to the pressure in-
crease. Zones circled in green (F and G) are well-understood
softening signals related to gas saturation increase. In these
zones, the gas saturation softening response dominates, but it
is always in competition with hardening signals due to wa-
ter saturation increase. In zone F, the water comes mainly
from the aquifer located to the north and west, aided by in-
jectors in the water leg. This zone is particularly complicated
because, aside from the water-gas competition, it lies under
a platform in an area of low seismic repeatability (Fig. 1d),
thus the seismic data here are very noisy and uncertain. The
AVO gradient is especially affected, crippling the data capabil-
ity of differentiating between pressurization-related softening
effects and gas saturation related ones. For this reason, inver-
sion results in zone F may show leakage between gas and pres-
sure effects. In zone G, the water comes from the two injectors
placed on its southwest edges. We see from the simulation re-
sults (Fig. 4) that a considerable amount of water has been
injected in this zone, but no hardening signal can be seen in
Fig. 3. As seismic data are much more sensitive to increases
in gas than in water saturations, the gas-related response
dominates.

We see some hardening signals related to water saturation
increase in Fig. 3, but no evident hardening signal related to
pressure depletion. The non-linear nature of pressure effects
on 4D seismic data means that even though pressure increase
leads to strong softening signals, pressure depletion results in
very low hardening anomalies. To complicate further, in the
present case, pressure depletion is always accompanied by gas
coming out of solution, so the gas softening effects always
dominate over the weak hardening pressure depletion signals.
This makes it particularly difficult to quantify pressure deple-
tion values from the 4D seismic data.

The main challenges for this inversion are to quantify the
pressure increase values in the pressurized compartments, to
differentiate between pressure related and gas related soften-
ing signals, to determine areas of pressure depletion and to
locate water fronts in areas where water saturation related
hardening signals are dominated by other competing effects.

DEEP NEURAL NETWORK ARCHITECTURE
AND TRAINING

We employ a deep neural network (DNN) with the encoder–
decoder architecture to translate the mapped sum of negative
amplitudes (�SNA) seismic attributes (Fig. 3) into the cor-
responding changes in three reservoir properties: �P, �Sw
and �Sg. Although we mention maps, this network is not
working on full images, instead it makes pixel-wise inferences,
analysing each pixel individually and independently of oth-
ers. In the training phase, it uses all the pixels (or samples)
provided in the training dataset to define one general non-
linear function that best links the values given in the input do-
main to the output domain. In the inference phase, it applies
this non-linear function individually to each pixel in the map
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Figure 5 Deep neural network architecture.

provided. Being so, there is no lateral correlation constraint
or smoothing technique to ensure lateral correlation and con-
trol noise content. For this reason, we employ three impor-
tant techniques that help to avoid overfitting and inverting
noise: dropout regularization (Srivastava et al., 2014), varia-
tional Bayes encoding layer (Kingma and Welling, 2014) and
training with noisy samples (Bishop, 1995).

The full DNN architecture consists of four encoding lay-
ers that compress the input information from 1024 neurons
in the first layer to 256 neurons in the last, a central layer
where variational encoding is implemented and a mirror de-
coder structure that decompresses the information back into
1024 neurons (Fig. 5). Compressing the information serves as
forcing function for the network to learn the most meaning-
ful features in the data in regard to the optimization objec-
tive. In each of the encoder–decoder layers we use a dropout
regularization technique in the training phase, this randomly
excludes 20% of the neuron connections in each training it-
eration. Dropout regularization is commonly used as a tech-
nique to prevent overfitting of the training data, leading to a
more general model and helping in dealing with noisy datasets
(Srivastava et al., 2014).

The central encoding layer is arranged so that each neu-
ron defines two outputs which are used to define Gaussian
distributions (mean and standard deviation). In the follow-

ing layer, each neuron draws one random value from each
Gaussian distribution. Consequently, a neuron from the cen-
tral layer feeds slightly different values to each neuron in the
following layer, as opposed to feeding the same value to all
neurons as it is done in all other connections in the network.
Using variational encoding in the central layer, instead of a
fixed link from encoding to decoding, provides a flexibility
to the network, making it more general and robust to noise
(Kingma and Welling, 2014). To be able to train the network
with back propagation of the gradients, we use the ‘reparam-
eterization trick’ as in Kingma et al. (2015). To construct this
architecture, we used a Tree of Parzen scheme for estimation
of the hyperparameters (Bergstra et al., 2013). This is an opti-
mization scheme that uses a subset of the training data to find
the best hyperparameters for the problem at hand. Adjusted
hyperparameters were the number of layers and neurons per
layer.

The input layer contains the time-lapse difference in the
�SNA seismic attribute, extracted for the near, mid and far
angle-stacks. From these three 4D seismic attributes, the net-
work calculates the four-dimensional amplitudes with offset
gradient to be used as an input as well. In the training phase,
before calculating the gradient, we add white Gaussian noise
to the synthetic data. This step is crucial for achieving mean-
ingful results when making inferences on the noisy seismic
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data. Training with noisy synthetics is equivalent to Tikhonov
regularization of inversion processes (Bishop, 1995), so it con-
trols overfitting and prevents the DNN from treating the noise
as signal. The magnitude of the added noise is controlled by
one single parameter, the signal to noise ratio, that defines the
standard deviation of the Gaussian distribution from which
random noise values are drawn. In a later section of this pa-
per, we present an analysis of the impact of this noise param-
eter on the inversion results and elaborate on how to assess
the performance of the trained models and select an optimal
value for this parameter.

In addition to the time-lapse seismic attributes,we also in-
clude in the inputs the reservoir pore volume, calculated from
the reservoir simulation model. This static parameter is rele-
vant as reservoir pore volume acts as a scalar on the 4D seismic
amplitudes, leading to stronger responses in areas with higher
reservoir pore volume. We observed that the addition of this
static parameter within the network architecture is essential in
achieving a more accurate regression result. The pore volume
as an input parameter abstracts the information the neural
network has to learn from the seismic input maps, alleviating
the learning process for the network (Dramsch et al., 2019b).

Supervised training of neural networks relies on an en-
semble of samples of known input-output pairs which define
the training dataset. We use the Adam optimization method
(Kingma and Ba, 2015) for training. It is a stochastic gradient
descent optimization approach with Nesterov momentum and
an adaptive learning rate. The algorithm iteratively updates
the neuron weights that define the network state, in each iter-
ation outputs are calculated from the inputs provided in the
training dataset. The algorithm then compares the calculated
outputs to the outputs in the training dataset, using a mean
squared error objective function. More details on the archi-
tecture and training strategies used can be seen on Dramsch
et al. (2019b).

The training data are presented to the network in the
form of N×1 vectors, with N being the number of samples
in the training dataset. Each of the parameters in the input
(�SNAnear,�SNAmid,�SNAfar and Pore Volume) and output
(�P, �Sw and �Sg) are presented as a separate N×1 vector.

CONSTRUCTION OF THE SYNTHETIC
TRAINING DATASETS

Defining the training dataset is one of the most important
steps in a neural network workflow. In the present application,
the network represents (or replaces) the physics that links the
seismic domain to the reservoir domain, but in fact it has no

knowledge or any information about the physics it represents.
It learns this implicitly from the training dataset, so the quality
of the training dataset will define how well the network will
mimic the physics of the problem and its capability of inferring
meaningful results from unseen data.

To construct the training dataset, we need to form an en-
semble of input–output realizations. These are independent
single pixel realizations of �P, �Sw, �Sg and Pore Volume
and their resulting sum of negative amplitudes values for near,
mid and far stacks. In the lack of a good and sufficient mea-
sured dataset, the alternative is to use synthetic data, generated
based on a physical model that represents as best as possible
the problem at hand.

In this application, we employ a reservoir simulator to
seismic modelling (Sim2Seis) technique (Amini, 2014) to cre-
ate synthetic seismic data from a reservoir flow simulation
model. We use one fixed reservoir model that has been pre-
viously history matched to production data. The model grid
spans the whole reservoir, so it contains a good representa-
tion of the variability of the static reservoir properties. We use
this static geological model as the frame for creating four dif-
ferent training datasets that differ in the distribution of the
sampled realizations in �P, �Sw, �Sg and Pore Volume. For
each realization, we extract a pseudo-log from a certain lo-
cation in the static reservoir model. The pore volume value is
calculated from this pseudo-log, as the vertical sum of the pore
volumes for active cells in the reservoir zone. Next, we define
a sample realization for the �P, �Sw and �Sg values. These
values are distributed vertically in all reservoir cells in the ex-
tracted pseudo-log, always respecting initial and residual sat-
uration values in each cell. As this is a map-based approach,
we do not model different vertical distributions of fluids or
pressure in the reservoir. With this approach, we maintain the
vertical resolution of the reservoir model on the static proper-
ties, but the dynamic properties represent a vertical average.
Angle-stacked seismic traces are then calculated for baseline
and monitor states using Sim2Seis and from them the sum of
negative amplitudes attributes are extracted along the reser-
voir time window.

The reservoir model cell dimensions are 50 × 50 m in
the lateral dimensions and 3 m vertically. The regular seismic
grid separation is 25 m in both inline and crossline directions.
For all synthetic seismic calculations, we use one fixed petro-
elastic model that was previously calibrated to the well logs
and the observed seismic data (Amini and MacBeth, 2015;
Amini, 2018). The petro-elastic model is based on a mixture
of sand and shale grains following volume fractions given by
reservoir net to gross.Rock frame elastic moduli are calculated

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 68, 2164–2185

164 B Journal Papers



2172 G. Côrte et al.

Table 1 Training dataset sizes and training times

Training
Datasets

Number of
Pseudo-Logs

�P × �Sw ×
�Sg Realizations
per Pseudo-Log

Total Number of
Samples

Average Training
Time (minutes)

1 300 1130 339,000 ∼17
2 300 475 142,500 ∼7
3 12,944 7 30,608 ∼4
4 12,944 100 1,294,400 ∼60

following Nur´s critical porosity model (Nur et al., 1998).
Pressure dependence follows the compliance model by Mac-
Beth (2004), using for model parameters the values measured
for a sandstone reservoir in the west of Shetland islands, anal-
ogous to Shiehallion,which are provided in his paper. Effective
fluid elastic moduli are calculated using a homogeneous sat-
uration model and Gassmann´s fluid substitution equations
(Gassmann, 1951) bring all the pieces together to calculate
the saturated rock elastic moduli. Seismic traces are calculated
by a convolution of a source wavelet with the reflectivity se-
ries calculated with the petro-elastic model. We use separate
wavelets for each angle-stack,which are extracted individually
from the each of the observed angle-stacked seismic volumes.
Wavelets are all zero phase with central frequencies of 29 Hz
(near), 25 Hz (mid) and 20 Hz (far).

We tested four training datasets with the objective of as-
sessing the impact of data size and the use of physics informed
realizations to populate the training dataset. The amount of
physics information used to construct the training datasets
increases from set 1 to 2 and to 3. For Training dataset 4,
data augmentation techniques are used to assess the impact of
dataset size on the inversion results, while keeping the similar
levels of physics information as in Training dataset 3.

Table 1 shows a comparison of the amount of data, how
it is distributed and the resulting training runtimes for all four
training datasets presented. Figure 6 shows the global distri-
bution of data in each training dataset.

Regularly sampled realizations (Training datasets 1 and 2)

In neural network applications, it is often desirable to have
general trained networks that can be applied satisfactorily to
many different cases. In the current application, this would
mean training one general network that can be applied to
many reservoirs with differing static and dynamic situations.
The most general training dataset should contain realizations
representing all possible situations, both on the static (Pore
Volume) and on the dynamic (�P × �Sw × �Sg) domains.

Training dataset 1 is constructed in a way as to be the
most general. For this, we generate synthetic realizations for
every point in a regular four-dimensional sample grid (Pore
Volume × �P × �Sw × �Sg). The sample grid covers the
whole range of possible situations on all four properties. To
keep the saturation values realistic, we apply a unity con-
straint on the sum of the saturations, and always respect
residual oil and water saturations, so that as an example,
if �Sw = 0.5, then �Sg is constrained to values between 0
and 0.15. For each Pore Volume value defined in the sam-
ple grid, we extract one single pseudo-log from the simula-
tion model that best represents this Pore Volume value. We
then proceed to calculating time-lapse seismic traces for all
realizations in the dynamic domain. The reservoir simulation
model is used here only to define the static frame for calcu-
lating synthetic data, but the reservoir simulation results are
not used.

The same sampling strategy is used for Training datasets
1 and 2. The only difference between these datasets is one
simple constraint used in Training dataset 2. This constraint
comes from our external understanding of the physical pro-
cesses governing the problem at hand. As has been mentioned,
in this reservoir, the increase of gas saturation is a response to
pressure depletion. As pressure goes below bubble point pres-
sure, gas comes out of solution from the oil phase. Wherever
pressure increases from initial pressure, which is above bubble
point pressure, we expect no gas saturation change to occur.
Thus, training sample realizations containing simultaneous in-
creases in pressure and gas saturation are not representative of
the reality analysed and could be interfering negatively in the
solutions. For Training dataset 2, we delete all samples with
simultaneous increase in pressure and gas saturation, conse-
quently making it less general, more specific to the reservoir
situation. The comparison of Training datasets 1 and 2 pin-
points the impact of one simple constraint, showing the ben-
efits that can be achieved by adding one bit of physical infor-
mation to constrain the realizations in the synthetic training
dataset.
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Figure 6 Histograms showing the global distribution of data in Training datasets 1, 2, 3 and 4.

Fluid flow consistent realizations (Training datasets 3 and 4)

A full 3D reservoir flow simulation offers �P × �Sw × �Sg
realizations that respect a full range of physical processes, in-
cluding the causal relationship between pressure depletion and
gas saturation increase, but also processes related to wetta-
bility, capillary forces, relative permeability, etc. Restricting
our training samples to the combinations offered by the re-
sults of a reservoir simulation model means that the training
dataset will respect all of these physical processes and thus
be even more realistic and similar to what an unbiased mea-
sured dataset would offer. The resulting training datasets are
even less general and more specific to the reservoir situation.
Reservoir simulation results are used in Training datasets 3
and 4.

For Training dataset 3, we use the reservoir simulation
results as the only �P × �Sw × �Sg combinations in the
training dataset. To maintain consistency with the previous
approaches we do not run simulator to seismic modelling di-
rectly on the reservoir simulation results, first we extract ver-
tical average maps for �P, �Sw and �Sg at a given time-step,

then we apply the same forward modelling process as previ-
ously described (distributing the averaged maps vertically in
the extracted pseudo-logs). We extracted simulation results
for eight time-steps corresponding to the seismic acquisition
dates. This choice on time-steps was done simply because it
is common to use a reservoir simulator to seismic modelling
workflow at seismic acquisition times to compare synthetic
with observed seismic data, so in this case we did not need to
extract additional simulation results, all the data were already
available and had been generated and used for other previous
purposes, this would usually also be true in a regular industry
setup. There is no real need to restrict the time-steps to seismic
acquisition dates though.

There is a great difference on the distribution of data us-
ing this approach (Fig. 6). In this case, we run synthetic traces
for every trace location in the simulation model, with this we
have 12,944 static pseudo-logs instead of the 300 of the pre-
vious models, on the other hand, we only have seven �P ×
�Sw × �Sg realizations per pseudo-log. Thus, pore volume
is much more finely sampled, and the global distribution of
pore volume is no longer uniform, here it resembles the global
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Table 2 Performances and training SNRs of the best models in the synthetic and well validations

Training Datasets Synthetic Validation Well Validation

Total NMSE �P �Sw NMSE �Sg Training SNR �P Training SNR
NMSE NMSE NMSE

1 3.08 2.68 2.19 4.37 21.5 6.60 39.5
2 1.56 0.71 1.66 2.31 42 2.50 19
3 0.66 0.62 0.70 0.64 17 0.46 14
4 0.56 0.50 0.73 0.45 11 0.40 12

distribution that could be found in reality. Regarding the dy-
namic domain sampling, though the simulation results cannot
be taken as the real reservoir fluid flow state, the global distri-
butions should resemble reality, as the model has been history
matched to well production and injection volumes and pres-
sure measurements. The resulting training dataset is smaller in
total number of samples but is much more representative of
the reality of the reservoir.

It remains true that DNNs benefit from larger amounts of
data. For this reason, in Training dataset 4 we make an effort
to augment the previous training dataset, while maintaining
all the physical relationships present in the reservoir simula-
tion results. We do this by grouping all the dynamic domain
samples (�P× �Sw × �Sg) in the previous training dataset to
create an ensemble of possible samples that respect the reser-
voir flow physics. For each static pseudo-log extracted from
the simulation model, we draw 100 random samples from this
global ensemble of dynamic realizations to run time-lapse syn-
thetic seismic traces. In practice, we take the reservoir simu-
lation results found at one trace location and apply it to a
different trace location, always respecting end member satu-
ration limits. This approach maintains global distributions in
pore volume, �P, �Sw and �Sg that are similar to Training
dataset 3 (Fig. 6), while augmenting the data size by 100 times.

MODEL PERFORMANCE QUANTIF ICATION

To assess the performance of each trained model, we use two
validation approaches. The first one is based on synthetic data,
where ground truth is exact, but the seismic data are more well
behaved and may not represent the real observed data prop-
erly. The second is applied to the observed data itself, using as
ground truth for validation the well measurements at seismic
acquisition times. In the second approach, the seismic data are
a good representation of the real data, but the ground truth
is not exact and carries itself some uncertainty. A summary
of the performance quantification results for all four training
datasets can be found in Table 2.

As has been mentioned, we add random noise to the syn-
thetic training samples in the training phase, to take advantage
of the regularization property this technique carries (Bishop,
1995). A deep neural network that is trained on noisy synthet-
ics is more generalized and capable of interpreting the noisy
character of the observed data and avoid overfitting this noise.
This capability varies with the amplitude of the noise added. If
we add too much noise, this corrupts the amplitudes with off-
set information in the training phase and inferences are com-
promised. To assess the impact of the training noise param-
eter on the inference performance, we train 100 models for
each training dataset, with varying training noise levels, rang-
ing from 0 to 50% in noise to signal ratio (SNR). Intuitively,
the best performance should be achieved by the model that is
trained using the same SNR levels as are present in the infer-
ence data. As the final objective is to apply the inversion to the
real observed 4D seismic, it is worth estimating the SNR level
present in this dataset. For this, we consider the noise power
as the root mean square (RMS) of the observed seismic ampli-
tudes in the northernmost segment, where no production has
occurred and no 4D seismic signal is expected, and the signal
power as the RMS across the whole reservoir. Observed 4D
seismic data noise level was estimated to be 14%.

Synthetic validation

In order to make a fair comparison between the performances
achieved with the four different training datasets, we created
an additional set of synthetic data, which is not used for
training in any of the models. We want the validation dataset
to represent the real data as well as possible, so that the
performances calculated can be interpreted as the capability
of a certain model to make correct inferences on the real
data. For this reason, the validation dataset is constructed by
extracting the reservoir simulation results for one separate
time step, which is not used in Training datasets 3 and 4.With
this the validation dataset contains 12,944 samples. Then,
we add random noise with 14% noise to signal ratio (SNR)
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Figure 7 NMSE results for the synthetic validation. (a) Total, (b) �P, (c) �Sw and (d) �Sg.

levels, so that the synthetic validation dataset contains noise
levels comparable to the observed 4D seismic. We apply the
inference step to the same noisy synthetic validation dataset
for all trained models and assess the performance by compar-
ing the inference results to the reservoir property values in the
validation dataset. Comparisons are made individually for
each reservoir property using the normalized mean squared
error (NMSE) metric, these are then individually normal-
ized using the standard deviation of each target reservoir
property and averaged to achieve a global performance
metric.

Figure 7 shows plots for the performances achieved as
a function of the training noise to signal ratio (SNR) for all
four training datasets. Plots (b)–(d) show the performances on
each property individually and plot (a) shows the global per-
formances for all the trained models. To provide a reference

we also show the performances achieved in the ideal noise-
less case (dashed lines), where the models are trained without
noise addition and applied to a noiseless version of the syn-
thetic validation dataset. Models that achieved the best total
performance for each training dataset are highlighted in Fig. 7
and their results are plotted in map form in Fig. 8.

We observe a global increase in performance (Fig. 7a)
with the addition of training noise for all training datasets.
Best performances do not achieve the performance values
for the ideal noiseless synthetic case (dashed lines) but are
all considerably better than when no training noise is added.
The addition of training noise is responsible for a decrease of
30–60% in the total normalized mean squared error (NMSE).
For Training datasets 1, 3 and 4, the total NMSE reaches
a region of lower values with training SNRs around the
noise level applied to the validation dataset (14%). Training

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 68, 2164–2185

168 B Journal Papers



2176 G. Côrte et al.

Figure 8 Map results from the best models in the synthetic validation.

dataset 2, on the other hand, shows an increase in perfor-
mance with training SNRs up to 49%. Intriguingly, for this
training dataset, it has been beneficial to train the model with
noise levels three times higher than the noise content of the
data it was applied to.

In a comparison between the training datasets, we see a
global increase in the performances from Training dataset 1 to
2(a). This is mostly due to better estimations of the pressure
(b) and the gas saturation (d). Performances for the water sat-
uration estimation are similar for Training datasets 1 and 2.
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This shows us that the use of a simple physics-based constraint
on the pressure and gas saturation has a positive impact on the
estimations of these two properties, while it has little impact
on the water saturation estimations. Training datasets 3 and 4
show considerably better performances than the two previous
ones, showing howmuch of a benefit can be achieved by using
training datasets populated with fluid flow consistent samples.
Training dataset 4 achieves slightly better total performances
(a) than Training dataset 3, indicating that the data augmen-
tation has been beneficial to the quality of inferences. Again
this is due to a difference in performances for estimating pres-
sure and gas saturation, as water saturation performances are
similar. For these two training datasets, the addition of noise
has no impact on the performance of the gas saturation esti-
mations.

Well data validation

Although we have made an effort to create a validation
dataset that mimics the real data, the performances achieved
when applying a model to synthetic data may not represent
the truth when the model is applied to the observed four-
dimensional seismic data. As has been mentioned, labelled
data for the real case are only present as measurements made
at wells during seismic acquisition times. For Schiehallion, we
only have bottom hole pressure measurements, which is the
main reason why we need synthetic data for training in the
first place. There is no real data to assess the inference re-
sults on the saturation values, but we can nonetheless assess
the pressure estimations only. The synthetic validation indi-
cates that total performances are mostly driven by the per-
formance on estimating pressures. This provides some confi-
dence in evaluating the models using well bottom hole pres-
sure measurements only, as the performance on the pressure
estimates may be a reasonable representation of the global
performances.

When comparing well bottom hole pressures to seismic
inverted pressures, it is important to keep in mind that the
pressure data measured at wells are not exact ground truth, it
carries uncertainties due to mainly two reasons:
-Spatial: In deviated wells, there is uncertainty in locating
where along the well perforations the bottom hole pressure
measurements should be related to. This is not an uncer-
tainty intrinsic to the well measurements, it becomes rele-
vant only when comparing inverted pressures along the well
perforations to the measured values.

-Temporal: A seismic acquisition may take weeks or even
months to be finished. Along this time, reservoir pressures

are not constant and bottom hole pressure measurements
may vary substantially. There is uncertainty in selecting the
ideal time to extract bottom hole pressure measurements for
the validation (Omofoma et al., 2019).

Figure 9 shows the normalized root mean squared
(NMSE) values achieved by all the trained models. In gen-
eral, the results corroborate the analysis made in the synthetic
validation study. All training datasets present an increase in
performance with the addition of training noise and a region
of higher performances around 14%, the estimated signal to
noise ratio (SNR) for the data they are applied to. In addi-
tion to these, Training datasets 1 and 2 show also other mod-
els with comparably good performances with higher training
SNR values. Training dataset 4 performs only slightly better
than Training dataset 3, considering the orders of magnitude
higher than computational cost.

Although each trained model offers a deterministic solu-
tion, training multiple models with varying SNR values offers
the possibility of entering a statistical mind-set. As we have
multiple models that present comparable performances, we
can create a more general solution by averaging the results of
a few best performance models. Additionally, we can use the
standard deviation of these solutions as an estimative to the
uncertainties in each estimation. Inversion results presented in
the next section are all averages of the 10 best solutions, as-
sessed using this well NMSE, out of the 100 trained models.
The models used for average and standard deviation quantifi-
cations are marked in Figure 9.

INVERS ION RESULTS

To provide a visual representation of the benefits of training
our deep neural network (DNN) with noise, in Figure 10 we
present the inversion results when the DNNs are trained with-
out noise (Training SNR = 0). Figure 11 shows the final in-
version results, corresponding to the average between the solu-
tions of the 10 best models selected in the well data validation
study. Zero training signal to noise ratio (SNR) results are ex-
tremely noisy for Training datasets 1 and 2. The noise content
is lower for Training datasets 3 and 4, results for water and
gas saturations are similar to the final inversion results but
noisier. It is the pressure results that improve most by adding
training noise.

In this section, we interpret the final inversion results
(Fig. 11) for each training dataset individually. Interpretations
are mostly qualitative, using the circled zones as references.
Zones circled in magenta are pressure increase areas and zones
circled in green are gas accumulation areas.
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Figure 9 NMSE results for the well data validation.

Training dataset 1

The inversion results for this approach are quite noisy, espe-
cially in the gas and the water saturations. This model is in-
capable of defining well the areas that are impacted by gas
saturation, showing very high increases in gas saturation all
across the reservoir. Areas dominated by water saturation-
related hardening signals are marked reasonably well, but we
see a biased background resulting in increases in water sat-
uration across the whole reservoir as well. Furthermore, wa-
ter saturation values are above the physical limits in many ar-
eas, all water saturation values shown in dark green (limit of
the colour scale) are above the 85% physical limit. The max-
imum values for water saturation are of around 1.7, which
would mean an increase of 170% of the total porosity in wa-
ter saturation. Although we can apply constraints to the train-
ing data, this does not guarantee that the results will also be
constrained, deep neural networks are capable of extrapolat-
ing the training data and there is no other way to apply con-
straints to the inference results. This may lead to unrealistic
solutions if the training dataset is inappropriate.

In the pressure results we see well marked pressure in-
crease in all the zones circled in magenta, which is what is
expected, but quantitatively the values are far from what is
measured at the wells. These areas are where the pressure ef-
fects dominate the seismic signal; everywhere else the pressure
results are noisy and present an apparent bias towards pres-
sure increase. We also see some leakage from gas saturation-
related softening signals into pressure results in zone F. As has
been mentioned, in this case, the seismic data are nearly insen-
sitive to pressure depletion. Furthermore, pressure depletion is
accompanied by gas breakout, and the seismic data are very
sensitive to gas saturation increases. When these two effects
are superposed, the much stronger gas effects dominate so that

pressure depletion effects are comparable to noise. The seismic
data do not offer any considerable information on pressure de-
pletion (Côrte et al., 2019), so it is comprehensible that we see
no pressure depletion in the pressure estimations, aside from
noise.

Training dataset 2

The use of the constraint in the training dataset has a positive
impact on the estimations of changes in pressure and gas satu-
ration (Fig. 11). Pressure results are less biased and leakage in
zone F is better controlled. Gas saturation results now mark
reasonably well the areas of gas saturation dominance (zones
G and F), but we still see a biased background showing gas
saturation increases of around 7% across the whole reservoir.
Water saturation results are nearly not affected by the con-
straint, estimations remain biased and values are above the
physical limits in many areas.

Interestingly, we now see pressure depletion values in cor-
relation with gas saturation increase in zone G. It is unlikely
that these results are based on information from the seismic
data so it could be regarded as noise, but as we will see clearly
in the results of Training dataset 3 and 4, this is an indication
that the network is learning an additional level of information
from the training dataset.

Training dataset 3

We can see that having a better representation of reality in the
training dataset samples pays off in the quality of the results
(Fig. 11). For Training dataset 3 we have much clearer results,
noise is contained for all three dynamic properties and we no
longer see the general bias present in the water and gas satu-
ration estimations for the previous models, instead, we have
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Figure 10 DNN inversion results using training SNR = 0, for training datasets 1, 2, 3 and 4.

a general background of zero values in the areas where there
is no seismic evidence of change in each dynamic property.
This leads to more contained water estimations forming well-
defined bodies that can be connected to the injection wells.
Quantitatively, water and gas saturation values are more real-
istic, falling below the physically possible threshold, except for
the water anomalies in the undershoot zone, where the seismic

data are corrupted by low repeatability issues (Fig. 1d). Water
front estimations are compromised in some areas where water
effects on seismic are dominated by pressure (zones C and E)
or gas saturation (zones F and G) effects. On the southwest
edge of zone G, there are two injectors that inject a consider-
able amount of water (as can be seen in the reservoir simula-
tion results in Fig. 4), but we have no seismic evidence of where

© 2020 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 68, 2164–2185

172 B Journal Papers



2180 G. Côrte et al.

Figure 11 Final DNN inversion results for training datasets 1, 2, 3 and 4. Maps represent the average between the 10 best solutions. Zones
circled in magenta are pressure increase areas and zones circled in green are gas accumulation areas.

this water has gone in the inversion results, because the water
effects are completely obscured by the gas accumulation here.
In zone E, pressure increase effects dominate the seismic re-
sponse, here the water saturation results are also inconsistent
with the amount of water that has been injected into this zone.

Pressure increase is seen in all areas where it dominates
the seismic response (magenta circles), furthermore, the quan-
titative values are more in line with the pressures measured at
the wells. Outside these zones we have a global trend of zero
values and, interestingly, we see pressure depletion values in
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correlation with gas saturation increase (zones F and G). It
is clear that this information is not coming from the seismic
data. If any seismic information related to pressure depletion
could be detected, it would be away from those gas accumula-
tion zones, where the pressure effect is not so overwhelmingly
dominated. Instead, the inversion results show pressure deple-
tion values only in direct correlation with the gas saturation
increase. This pressure depletion – gas saturation increase cor-
relation is present in the training dataset, as gas exsolutions is
one of the physical processes modelled by the reservoir sim-
ulation. This is a clear indication that the deep neural net-
work (DNN) is learning the correlations present in the train-
ing dataset and using this information to make inferences on
the dominated properties, where the seismic data cannot pro-
vide useful information. We also see a curious gas saturation
decrease accompanying the pressure increase in zone B. As
there is no initial gas in the reservoir, gas saturation decrease
is not present in the training datasets. It does represent a pos-
sible reality between monitors, but as we use a pre-production
baseline, negative changes in gas saturations are not realistic.
We see this result as an indication that the DNN is not only
learning the correlation between pressure depletion and gas
saturation increase, but also extrapolating this correlation to
result in gas saturation decrease in pressure increase zones.
This extrapolation is undesirable, as it leads to non-physical
results, but it cannot be prevented.

Knowing that the DNN learns not only relations that link
input to output but also the correlations between variables
in the training dataset emphasizes the argument that the dy-
namic domain sampling used for creating the training dataset
should be retained to physically realistic combinations, be-
cause the DNN will embed this physical knowledge into the
non-linear transformations it learns. It is also important to
note that the data size of this training dataset is much smaller
than in the previous models, which means training runtimes
are also much faster (Table 1). In this case, it is not necessarily
the size of the dataset that matters most, instead the ability of
this dataset to represent specifically the global reality of the
problem is more important.

Training dataset 4

Augmenting the data size in this approach affected the results
only slightly (Fig. 11), but nonetheless the results are gener-
ally more consistent. In the pressure results, we see less noise
and leakage in the areas dominated by gas (zones F and G).
Water saturation results are now below the physical limit ev-
erywhere in the map, though the shape of all the water bodies

is very similar to the previous case and the definition of water-
fronts does not improve in areas of overwhelming dominance
by other properties (zones B, C, D, F and G). Gas saturation
results are similar but generally smaller than with Training
dataset 3 and zone B no longer shows unrealistic gas satura-
tion decrease values. Given the uncertainty in the estimations,
the uncertainty in the reservoir simulation results in this prop-
erty and the lack of measured saturation logs, it is impossible
to define which gas saturation solution is more precise.

Globally the results using Training dataset 4 are slightly
better than in model 3, but this comes at a high computa-
tional cost. In Table 1, we see that Training dataset 3 con-
tains the smallest data size and quickest runtimes and nonethe-
less it performs much better than Training datasets 1 and 2,
and nearly as well as Training dataset 4, which takes 15 times
longer to train. It is also relevant to consider the time it takes
to compute the synthetic seismic data to build these training
datasets, which is around 100 times longer in Training dataset
4 than in 3.

From this analysis, we see the critical importance in con-
straining the realizations of our synthetic training dataset to
realistic physics informed and fluid flow consistent combina-
tions that represent the specific problem at hand. This con-
straining will make the model less general, so it should not be
applied to a different case that may not contain the same con-
straint assumptions (e.g. gas injection, gas caps and reservoir
compaction), instead it will be more specialized to provide the
best results to one specific case.

UNCERTAINTIES

The presented deep neural network workflow is essentially
a deterministic solution, but as discussed, we could produce
multiple slightly different but equally viable solutions vary-
ing the signal to noise ratio (SNR) parameter for training. We
can use these multiple solutions to create a simple estimation
to uncertainties in the results. Uncertainties here represent the
instability in the solutions with varying SNR values. Figure 12
shows maps of the standard deviations of the selected 10 best
solutions for all four training datasets.

For Training dataset 1, uncertainty results offer little use-
ful information. From Training dataset 1 to 4 gradually the
uncertainties decrease globally, but some patches stand out
with high uncertainty values. For the water saturation, un-
certainties tend to be higher in the pressure increase zones,
and around the high normalized root mean squared (NRMS)
zone, which is represented well in the uncertainty results. On
the other hand, uncertainty results do not represent well the
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Figure 12 Uncertainty estimations for the four training datasets.

uncertainties expected in areas where water saturation effects
are dominated by gas saturation effects (Zones D and E). Un-
certainty results for pressure seem to show a direct correla-
tion with the pressure values themselves. This is the opposite
of what is expected, as seismic data become more sensitive to
pressure as pressure increases. It is unclear what value can be
brought from these types of uncertainty estimations, as they
do not represent seismic or modelling uncertainties. One thing

does stand out though. Uncertainty values for all three prop-
erties highlight zone B as a high uncertainty area.

Zone B is an isolated compartment that was pressurized
due to water injection. The injector well was online for around
three years andmeasured pressure increases as high as 20MPa
in 2004, when the seismic acquisition was shot. A previous
feasibility study in the area indicated that in order to reach
the observed seismic amplitudes, the pressures would need to
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be above the estimated rock fracture limit. There are many as-
sumptions in the current petro-elastic model that make it unfit
for representing the elastic behaviour of a fractured rock. If the
rock has indeed been fractured due to high injection pressures,
this means the petro-elastic model used in the creation of the
training dataset cannot represent well the rock physics of this
zone. Thus, in zone B we have an example of the use of an in-
adequate training dataset, constructed with an improper rock
physics model. This results in solutions that are more unsta-
ble with small changes in the noise parameter, which reflects
as high uncertainty values. So the uncertainty estimations here
were useful for identifying a zone where the synthetic training
data are unfit and thus inversion results are not trustworthy.

CONCLUSIONS

The present study has shown that deep neural networks
(DNNs) trained exclusively using synthetic data can provide
good solutions to the problem of inverting time-lapse seismic
data to the simultaneous changes in pressure, water satura-
tion and gas saturation. We show clear evidence of the bene-
fit of adding noise to the synthetic data in the training phase
to achieve less noisy and more accurate estimations. Train-
ing multiple models with varying training signal to noise ra-
tio (SNR) values and assessing model performance using well
measured data offers a possibility of selecting multiple equally
probable solutions to create a more general average result.
This may also lead to an estimation of the related uncertain-
ties, by calculating the standard deviation of the solutions pro-
vided by the selectedmodels.Uncertainty estimations here rep-
resent instability in the solutions with respect to the noise pa-
rameter and may indicate areas where the training dataset is
inadequate.

We show the critical importance of using physics in-
formed sampling of the dynamic domain in creating the train-
ing dataset, illustrated by the gradual increase in inversion
quality from Training datasets 1 to 3. From datasets 1 to 2, we
see that adding a simple external physical knowledge to con-
strain the samples has a positive impact on the solutions.Using
the results of a three-dimensional reservoir flow simulation as
the only samples in the dynamic domain (Training datasets 3
and 4) guarantees that the training dataset respects all phys-
ical processes modelled by the reservoir simulation. Training
datasets then contain physical boundary constraints, physical
correlations between dynamic domain parameters and global
distributions that resemble the reality of the reservoir. This re-
moves bias in the results and prevents the model from extrap-
olating beyond the training dataset and leading to extreme un-

realistic results. Solutions also become more stable, less noisy
and more precise.

Additionally, we observe that when trained using fluid
flow consistent data, the DNN learns not only the relations
that link input to output, but also the correlations present in
the training dataset, making use of those correlations to make
inferences on dominated properties, where the seismic data
lack information. This is observed in this case in the correla-
tions between pressure depletion and gas saturation increase.
Learning these correlations allows the DNN to resolve some
ambiguity present in the seismic data, resulting in better solu-
tions both in the pressure and in the gas saturation results.

We show that, in the present application, an ideal training
dataset is one that resembles the most what an unbiased mea-
sured dataset would be, both in the sense of containing all the
physical correlations in the dynamic domain and also main-
taining a realistic global distribution on all related properties.
This makes the DNN model less generalized, more specific to
the problem at hand, so it should not be applied to describe
situations that do not respect the constraints used in the train-
ing dataset.

Augmenting the data size while maintaining physical con-
straints achieved slightly better solutions, improving noise
content and leakage in the results. This comes at a high com-
putational cost though. In this application, it seems more im-
portant to constrain the sample realizations to physically in-
formed and fluid flow consistent combinations than to chase
large data sizes.
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C.1 Rapid seismic domain transfer: Seismic
velocity inversion and modeling using
deep generative neural networks

Abstract: Traditional physics-based approaches to infer sub-surface properties such
as full-waveform inversion or reflectivity inversion are time-consuming and computa-
tionally expensive. We present a deep-learning technique that eliminates the need
for these computationally complex methods by posing the problem as one of domain
transfer. Our solution is based on a deep convolutional generative adversarial net-
work and dramatically reduces computation time. Training based on two different
types of synthetic data produced a neural net that generates realistic velocity models
when applied to a real data set. The system’s ability to generalize means it is robust
against the inherent occurrence of velocity errors and artifacts in both training and
test datasets.
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G. Ganssle (June 2018c). “Rapid seismic domain transfer: Seismic velocity inver-
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Abstract

Traditional physics-based approaches to infer sub-surface properties such as full-
waveform inversion or reflectivity inversion are time consuming and computation-
ally expensive. We present a deep-learning technique that eliminates the need for
these computationally complex methods by posing the problem as one of domain
transfer. Our solution is based on a deep convolutional generative adversarial net-
work and dramatically reduces computation time. Training based on two different
types of synthetic data produced a neural network that generates realistic velocity
models when applied to a real data set. The system’s ability to generalize means
it is robust against the inherent occurrence of velocity errors and artifacts in both
training and test datasets.

1 Introduction

The task of inferring subsurface geological structures from depth-domain seismic data is a compu-
tationally demanding process that frequently appears in geophysical studies and hydrocarbon explo-
ration. Typically, seismic inversion is performed by means of wave inversion methods of a simple
prior model of the subsurface and using a backpropagation loop (Lailly et al., 1983; Tarantola, 1984)
to iteratively reduce the mismatch between the observed seismic data and the computed synthetic
model (Pratt et al., 1998; Virieux and Operto, 2009). Although this approach leads to satisfactory
results in practice, it requires an overwhelming amount of computer resources with no guarantee of
global convergence; making it inappropriate when time and computing constraints are strict or when
we need to perform the same task for a number of geological scenarios.

As an alternative, we propose a data-driven approach that uses deep generative neural networks to
formulate the seismic forward and inversion process as a domain transfer problem, which allows
us to learn two functions from the datasets: 1) a function to map from the seismic geo-model
to the seismic amplitude domain 2) a function to map from seismic amplitude to the geo-model
domain. One of the main advantages of this approach comes from the fact that the training step of
the algorithm does not require a set of paired input-output images in the dataset.

1
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We present examples of the resulting forward and inverted datasets using the domain transfer
method, based on simple synthetic structural models, as well as the Marmousi 2D dataset. Finally,
we highlight challenges and possible applications of the proposed approach.

2 Theory

Texture transfer or neural style transfer is an area of research in computer vision. Gatys et al. (2016)
used an iterative process to transfer camera photographs into a desired artistic style. They showed
results that extracted the features of pre-trained VGG networks (Simonyan and Zisserman, 2014) to
model the desired output. This is a computationally expensive iterative process. However, Johnson
et al. (2016) specialise a single network per textural style, removing the need to solve an iterative
minimisation problem. Isola et al. (2016) reframed the problem in the sense of a domain transfer
problem. Here a generative model could be built that transfers the original data to the artistic style.
Particularly, a generative adversarial network (GAN) was used with pair-wise corresponding images.
Zhu et al. (2017) loosened the constraint on pair-wise training data in a cycle-consistent GAN that
learned transfer function between domains. Seismic inversion is an expensive iterative task similar to
the computer vision problem discussed here. We use neural style transfer to find a transfer function
from seismic amplitude data to velocity functions. We show that this process can benefit from the
advancements in deep learning and computer vision.

Deep convolutional generative adversarial networks (DCGAN) consist of two powerful neural net-
works that learn by competition (Goodfellow et al., 2014; Radford et al., 2015). The generator
network G draws samples from a noise prior or so-called latent space. The generated output is
presented to the discriminator network D in a randomised switch with real data. The discriminator
determines whether the output is generated by G or real. A loss function determines the rate at which
both networks learn. In this case, G gets better at generating realistic outputs and D improves the
ability to evaluate the realism of inputs. In a cycle-consistent setup, we train two GANs in parallel.
The generator G learns the forward generative model. The second generator network F learns the
inverse generative model. The GANs are set up to perform a full circle in the calculation. Input from
domain X is mapped to domain Y by generator G, then generator F maps the result from domain Y
to domain X. Ideally, the output of the cycle resembles the input so that F(G(xi)) ≈ xi.
Both networks G and F are subject to an adversarial loss objective. The adversarial loss from the
network of Zhu et al. (2017) is defined as:

L(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)] + Ey∼pdata(x)[log(1−DY (G(x)))] (1)
with the second adversarial loss being equivalent as L(F,DX , Y,X).

The cycle of the two GANs has to be consistent in the forward pass x → G(x) → F (G(x)) ≈ x
as well as the backward pass y → F (y) → G(F (y)) ≈ y. Zhu et al. (2017) formalise the cycle
consistency loss as follows:

L(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1] + Ey∼pdata(y)[||G(F (y))− y||1] (2)
The combined objective function is simply:

L(G,F,DX , DY ) = LGAN (G,DY , X, Y ) + LGAN (F,DX , Y,X) + λ · Lcyc(G,F ), (3)
where λ is a tuning parameter to weight the relative importance of the networks G and F. Enforcing
cycle consistency ensures that the data produced by the networks is statistically representative of and
bounded by the training dataset, a property that makes the architecture suitable for use in seismic
inversion.

3 Convolutional Synthetic Seismic Data

Initially, the network has been tested on geological models with a variety of features. We use a
geological modelling package to generate realistic model data with multiple layers with varying
velocity/impedance and thickness, folding, faulting and dyke intrusions. The synthetic seismic was
generated by convolving the associated reflectivity with a Ricker wavelet.

Figure 1 shows the input, result and reference for the generative networks G and F. The first row
shows the forward pass from the model domain to seismic domain. A comparison with reference
data shows a good match in both the structure and amplitudes.

2
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Figure 1: We evaluate the performance of the forward model G and inverse operator F based on
unseen data of a dyke-anticline training dataset. The first row shows the forward pass through
network G from the velocity model to the seismic domain. Row 2 shows the forward pass of network
F from the seismic to the model domain. In both cases excellent agreement can be found with the
reference images (Column 3).

4 Marmousi2 Synthetic Seismic Data

True seismic with its associated velocity errors and noise-related artifacts presents a much bigger
challenge compared to the first example. To demonstrate the robustness of the method, we train on
synthetic pre-stack Kirchhoff depth migrated seismic of the (elastic) Marmousi2 dataset (Martin,
2004). The data patches extracted from the data show much greater variability and less bias towards
high velocity dykes that were prevalent in the convolutional synthetic seismic.

The training was further improved by two pre-processing steps: contrast-enhancement and his-
togram equalization. The 2D patches we extract from the model, processed and fed to the network
are shown in figure 2.

5 Results

We test the improved network F by taking real data (”Dutch F3”, left panel figure 3) as input, that
the network has never seen before. The section suffers from migration artifacts (bottom left), and
occasional non-continuous reflectors, often a problem for computer vision algorithms. Low contrast
regions on top of a high contrast region shows different internal structures and geometries that the
network likely has not seen before.

Figure 3 shows the result of the mapping process of network F. The run-time of this seismic inversion
process (the network’s operation (F)) is in the order of seconds (GPU time). High contrast areas from
the seismic have been identified accordingly. The generated model shows large velocity contrasts
where strong reflections occur and changes more smoothly otherwise. The fault is preserved in the

3
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Figure 2: Example training patches extracted from the Marmousi2 synthetic model by Martin
(2004). On the left velocities and on the right synthetic seismic forward models are shown.

velocity model, while the velocity model shows some continuity of velocities across the fault where
appropriate.

Figure 3: (left) Input seismic to network F to test the seismic inversion performance of generative
adversarial networks. (right) Extracted velocity model generated by network F.

6 Conclusions

We have presented a method to generalise seismic forward and inverse modeling approaches using
domain transfer methods. Sets of training images of two-dimensional synthetic velocity models
and forward models have been used to train a pair of deep convolutional neural networks. Once
trained, these networks allow extremely fast extraction of estimated velocity fields and geological
structure showing qualitatively good results on unseen seismic observations such as the F3 dataset.
In our experimentation so far the technique appears to be particularly robust even when training is
performed on synthetic datasets containing velocity errors and noise artifacts, providing convincing
forward pass results on seismic data from the field. We believe the cyclic consistency constraint
within the architecture and the associated relaxation of the requirement of perfectly matched paired
input-output images plays a key role in stabilising the network, making this transfer possible.

4
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C.2 Correlation of Fractures From Core,
Borehole Images and Seismic Data in a
Chalk Reservoir in the Danish North Sea

Abstract: We present an integrated fracture study in the Ekofisk chalk reservoir of
the Kraka Field, offshore Denmark, based on core, borehole images and seismic data.
The core contains numerous fractures ranging from short (cm-scale) fractures, mostly
associated with chert or stylolites, to large (m-scale) open, slickensided fractures likely
related to halokinesis. On borehole images, especially larger fractures are identified,
coinciding in dip and dip-azimuth. Seismic data at an approximate resolution of 40m
would not resolve these local features around the well-bore. We show that chromatic
analysis combined with an ant-tracking algorithm extracts several lineaments (> m-
scale) from the seismic data. These correlate closely in orientation and distribution
with the fractures logged in the well data. It is likely that these represent fracture
corridors, small faults or damage zones in the chalk. The seismic data therefore
provides a valuable method for mapping the size, orientation and connectivity of
fracture zones away from the well. This gives insights into the scalability of local
stress fields, and fracture distributions.

T. M. Aabø, J. S. Dramsch, M. Welch, and M. Lüthje (June 2017). “Correlation
of Fractures From Core, Borehole Images and Seismic Data in a Chalk Reservoir in
the Danish North Sea”. In: 79th EAGE Conference and Exhibition 2017. Published,
Appendix C.2. EAGE. doi: 10.3997/2214-4609.201701283. url: https://doi.
org/10.3997/2214-4609.201701283
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Introduction

The Kraka oil Field is a salt-induced anticlinal structure located in the southernmost tip of the Danish
Central Graben (Danish North Sea). It is produced through natural depletion of the Danian Ekofisk Fm,
an overpressured, naturally fractured chalk reservoir. Ekofisk chalk is a mono-mineralic carbonate rock
that consists of 96 - 99% calcite (CaCO3), non-carbonate biogenic particles and small amounts of clay
particles (Abramovitz et al., 2010). The Danian of the Kraka Field is divided into an upper porous zone
(units D1 – D3) and a lower tight zone (D4 – D5). Porosities in the porous zone are in the range of
25 - 35%, and vary only slightly across the field (Klinkby et al., 2005). In the reservoir, silica occurs as
continuous chert bands and isolated chert nodules. The matrix permeability is less than 1mD, however,
the effective permeability is approximately 20 times that due to the presence of fractures.

Tectonic fractures related to halokinesis are the main permeability enhancers. Smaller fractures associ-
ated with cherts and stylolites may however be important for local permeability enhancement. Fractures
in Kraka occur in swarms (Jorgensen et al., 1991). Fracture spacing, orientations and connectivity in the
field are currently not well constrained.

In this extended abstract we compare fractures and fracture zones observed at different scales on core,
borehole images (FMS and FMI) and ant-tracked seismic volumes, and show that we can correlate
between them. BHI and core data are highly complementary. Borehole images are cheaper, provide
true orientations and survey the reservoir in-situ, so we can differentiate open and closed fractures under
reservoir conditions. Cores allow for direct observations, analyses at nano and micro scale and laboratory
experiments. Seismic is used to map faults and fracture zones away from the borehole and to identify
regional structural trends. Combining the three data types allows us to extrapolate fractures away from
the borehole, and will serve as inputs into a mechanically based discrete fracture model (DFN), which
will improve future well planning and EOR activities.

Method and Theory

Micro-resistivity images from FMS and FMI tools are available in one vertical well and seven horizontal
or deviated wells. The surveyed wells were drilled in the time period between 1989 and 1997 and raw
data has been reprocessed for this study. Due to the high resistivity of chalk, caving and tool sticking,
image quality is poor in many places. Chalk sections directly below chert bands have been particularly
hard to resolve, as the chert bands do not have planar surfaces and so cause errors in the pad alignment
stage of processing. The cherts, being highly resistive compared to the chalk, are in turn well resolved.
A large portion of the fracture swarms in Kraka are chert associated. Additionally, cherts enable depth
matching between borehole images and cores, as depth shifts along wells vary by up to 8 ft

Cores are available in three of the wells logged by BHI tools: Well 1 (deviated), Well 2 (horizontal), and
Well 3 (vertical). This abstract focuses on analyses from Well 1, where the core-recovery percentage
is highest. Relative fracture orientations measured in core have been reoriented, depth shifted and are
plotted alongside image picks.

Fracture picks from BHIs and cores are subsequently compared to a structural framework derived from
seismic images. Seismic amplitude cubes acquired in 2012 have a vertical resolution in the order of 40 m.
Therefore, high-fidelity information from the Kraka amplitude cube has been extracted using a gapped
chromatic method that is based on structurally sharpened satellite RGB/HSV processing (Laake, 2015).
The resulting structural cube serves as an input for an algorithm that systematically analyze the data,
mimicking the "swarm intelligence" of ants (Pedersen et al., 2005). The algorithm extracts structural
lineaments and assigns confidence levels depending on the length and width of the path of segments, to
enhance subtle compaction features and small-scale faulting that are essential to the interpretation of the
Kraka chalk field. The additional structural information is used as an opaque overlay on the conventional
amplitude cube to guide the seismic interpretation and to avoid misclassification of noise or acquisition
artifacts. Centimeter- to meter-scale fractures identified in borehole images and cores are compared to
these larger structural lineations in 3D.
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Correlation of Core and Borehole Images

In the BHI data from the Kraka Field, sinusoids representing bedding (chalk and marl) are continuous
across borehole images. Most fractures are however only represented by partial sinusoids, either because
they are short or because they are only partially open or cemented. Comparison with core data, when
available, is imperative in determining which partial signals should be picked. Lessons learned from
cored wells are transferrable to BHI-surveyed wells without core.

The advantage of core is that we can identify smaller-scale stylolite associated fractures that are not
detectable on images because the image resolution is about 1-2mm. Most open chert associated fractures
are however visible, due to the large resistivity contrast between cherts and water-based drilling mud.
The length of the chert-associated fractures depend on the size of the chert band or nodule, and varies
between 10 and 50 cm in Well 1.

Figure 1 Core log (a) with faults in red and Core-to-BHI correlation (b) of fractured interval in Well 1

Figure 1 shows a logged core interval (a) with corresponding BHI section (b) from Well 1. The core
interval contains two natural fractures, represented by blue tadpoles in the BHI. Both fractures are open
(non-cemented) in the core, but are recognized as natural fractures by the presence of slickensides. The
logged fractures coincide with one open (conductive) and one closed (resistive) fracture picked on the
borehole image. The conductive fracture is associated with the continuous chert band, while the resistive
feature is believed to represent a tectonic fracture. The relative timing of silica formation and saltdoming
in Kraka is yet to be determined. However, as one of the closely-spaced fractures is cemented, while the
other is not, it is reasonable to assume that they represent different fracture-generations.

The dip and azimuth of both fractures identified in BHI match the orientation of the fractures logged in
core within 12o. Small discrepancies are to be expected, as core must be reoriented manually to calculate
true orientations, so fracture orientations from BHIs are commonly considered the most reliable, while
the presence and type of fractures can be identified in the core.
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Correlation of Seismic and Well Data

Figure 2 Seismic overlaid with ant-tracked chromatic structural cube and close-up of interpretation
compared to BHI fracture discs.

In figure 2 we show the ant-track as transparent overlay over the seismic amplitude. The Top Hod to Top
Chalk interval and the highly fractured overburden in the Kraka field are imaged. The z-plane in figure
2 cuts the inner chalk reservoir on Top Hod level. On this plane several lineations can be identified that
strike radially relative to the anticlinal reservoir structure. The primary reservoir between Top Tor and
Top Chalk shows several discontinuities and amplitude variations. On the cross-section we see conjugate
inclined (< 45o) faults cut through the reservoir and extend into the overburden and the underlying chalk
package. Amplitude variations within the reservoir reflect compaction effects and possibly the influence
of fluids saturation. The overburden is heavily fractured with low-throw (15m) conjugate faults that are
highlighted with high confidence levels (blue) by the ant-tracking algorithm. The faults are parallel with
a spacing between 50 m and 100 m and may be reactivated during depletion. This dynamic overburden
must be corrected for in 4D seismic analysis.

The close-up in figure two highlights the faulting at reservoir depth. The z-plane was adjusted to reflect
the middle Danian data. Cross-cutting faults along the wells are easily identified.

Figure 3 Rose diagram with stereonet overlay,
representing BHI picks as triangles and seis-
mic fault as squares

High-confidence features along the well may be pro-
duction related. The close-up also increases the visibil-
ity of lower confidence features from the ant-track al-
gorithm. These also reflect low-throw conjugate fault-
ing cutting the reservoir and compaction related fea-
tures are highly visible in this display.

Along Well 1 cross-cutting faults are clearly visible.
In the close-up, the two fracture picks from the BHI
(Fig. 1) are imaged as discs corresponding to dip an-
gle and azimuth. The Kraka reservoir is highly frac-
tured and heterogeneities are clearly visible as ampli-
tude variations on a seismic scale.

The dip and the dip-azimuth of the conductive fracture
(black) corresponds well to the fault (green) from the
seismic interpretation. The dip-azimuth of the resistive
feature (brown) aligns with the seismic feature (blue),
the dip angle deviates, however. The rose diagram in
figure 3 shows the azimuth at a 5o interval coinciding
for both fractures. The stereonet overlay also confirms
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the qualitative assessment that the dip angle of the resistive fracture is steeper than that of the turquoise
fault plane and a good match of the conductive fracture with the blue fault plane.

These results show that seismic data and careful post-processing shows stress trends that are reflected
at the subseismic scale by BHI and core data. Seismic data is not capable of distinguishing open and
closed fractures. Parallel and conjugate faults (yellow) in figure 2 strengthen the case of a consistent
regional stress field that scales down to local stresses observed at the BHI and core scale. These can
serve as input to building a field scale DFN.

Conclusions

Integrated comparisons of core, borehole image and seismic structural data in the Kraka Field indicate
that:

• Many of the fractures seen on core can also be identified on borehole images, especially chert
associated fractures. However stylolite associated fractures identified in core are not visible on
borehole images. Chert associated fractures, extensional fractures and faults are commonly rep-
resented by partial sinusoids in BHIs, suggesting they are either short or only partially open or
cemented.

• Borehole images are imperative in distinguishing cemented and open fractures, and thus better
constrain fluid flow along the fracture network.

• Chromatic method and ant-track algorithm allows us to image subtle faults, fracture zones and
compaction features not obvious on amplitude cubes.

• Structural features picked on BHIs correlate to large-scale regional trends and to features picked
on ant-tracked seismic data. This allows us to extrapolate them away from the wellbores and
calibrate 3D models (e.g. discrete fracture network models).

This integrated study proves invaluable in testing assumptions in building fracture models and the sub-
sequent upscaling process.
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APPENDIXD
Workshop Papers

D.1 Information Theory Considerations in
Patch-based Training of Deep Neural
Networks on Seismic Time-Series

Abstract: Recent advances in machine learning relies on convolutional deep neu-
ral networks. These are often trained on cropped image patches. Pertaining to
non-stationary seismic signals this may introduce low frequency noise and non-
generalizability.

J. S. Dramsch and M. Lüthje (2018f). “Information Theory Considerations In
Patch-Based Training Of Deep Neural Networks On Seismic Time-Series”. In: First
EAGE/PESGB Workshop Machine Learning. Published, Appendix D. EAGE. doi:
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Introduction 
Sampling in physics-based applications and digital signal processing has long been recognised as an              
essential constraint. The Nyquist-Shannon theorem is the most prominent information theorem that            
prevents aliasing in seismic data (Seibt, 2006). Sampling has to be considered an essential part of a                 
machine learning pipeline to avoid the implicit bias of learnt decision boundaries and joint              
distributions. 
 
Machine Learning algorithms, particularly deep convolutional neural networks (CNN) often learn on            
patches of data. In many applications, the dynamic range of the data is additionally converted from                
32-bit floats to 8-bit integers. This loss of dynamic range often speeds up training of networks and                 
stabilises convergence at the loss of accuracy. However, investigations into precision have shown that              
this effect may be negligible (Holi and Hwang, 1993). Patch-based image training in machine learning               
usually takes smaller windows of data. The ImageNet challenge (Deng et al., 2009) provides 256x256               
pixel images, which sets standards for many machine learning architectures. 
 
Theory 
Seismic traces are often sampled at 4ms and contain several hundred to thousands of samples. The                
Nyquist-Shannon theorem applies to high-frequency bounds only. However, we propose that a lower             
bound has to be adhered to when applying real-valued transformations to data before reconstruction.              
Low-frequency aliasing can be seen as a DC offset, where DC is the value at 0 Hz. This effect has                    
been studied in non-stationary signals in applications such as seismic frequency decomposition            
(Chakraborty and Okaya 1995). 
 
In statistical learning, many applications learn implicit joint distributions of the data. These are often               
approximated by multivariate distributions or transformations that operate solely on real-valued           
signals instead of complex signals (Hirose, 2003). This is equivalent to a mean shift of the data, as                  
well as noise of the mean and may hinder convergence of the algorithms and diminish results.                
Inference on images that can appropriately sample low frequencies, due to a larger size, could lead to                 
non-generalizability of the data due to implicit bias, which is the antithesis of machine learning. 
 
We propose a low-frequency boundary, which follows the Nyquist-Shannon sampling theorem. With            

, where T is the maximum period resolvable in the time series. This is due to the fact that wef ny = 1
2 T                     

treat cutouts of a non-stationary signal as representative of the entire series and therefore, have to infer                 
stationarity within the available bandwidth. 
 
Example: Neural Network - Single Neuron 
Neurons in neural networks are described by the activation , where w is the network         ( w  b )σ · x +        
weights, x is the input data, b is the network bias, and sigma is a non-linear activation function. A                   
common non-linear activation is the rectified linear unit (RELU) . Considering the         (x) max(0, )σ =  x    
inference stage, the network weights w and biases b are fixed, x is the only variable parameter.                 
Learning on a mean-shift of q of an arbitrary distribution over x leads to , which              ( w x q) b )σ · ( +  +    
increases the neuron response by q, weighted by w. At inference, the mean-shift over larger inference                
data disappears, introducing an additional bias of before non-linear activation. This training bias        w · q       
may lead to prediction errors of the neuron and consequently the full neural network. 
 
Example: Dutch F3 Seismic data 
We use a randomly selected trace from the Dutch F3 dataset. The total recording time is 4 seconds                  
with 1001 samples sampled at 4 ms. The sampling interval of 4ms allows for a maximum frequency                 
of 125 Hz. We compare the reconstruction of the signal from the real part of the frequency spectrum                  
for non-overlapping patches. The frequency content of real-valued stationary traces would be similar,             
whether a trace is split into parts or whole. 
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The frequency content in Figure 1 shows that properly tapered data introduces a DC offset and the                 
phase spectrum cannot be reconstructed fully. For a window of 101 samples at 4 ms, we get the lower                   
Nyquist frequency of ~12.5 Hz. A patch of 256 samples at 4ms has the lower bound of ~5 Hz. We                    
propose that a high-pass filter at training may improve convergence. Transfer learning on larger              
patches with fewer epochs then recovers low-frequency information, while keeping training times            
attainable.  
 

 
Figure 1 We present different sizes of cutouts, with 101 and 256 samples respectively. In the middle,                 
the full normalised amplitude spectra are presented. On the right, the according phase spectra are               
presented. On the left, we focus on the frequency content of the amplitude spectra around 0 Hz. The                  
cutouts were Hanning tapered, however, a clear DC offset appears with decreasing patch size. 
 
Conclusions 
We investigate the frequency content in non-overlapping patch-based seismic data. Non-overlapping           
patches may introduce low-frequency noise that translates to a mean-shift of learnt distributions.             
Further investigations into frequency responses of Convolutional Neural Networks (CNN) and the            
computation thereof, which is common in the frequency domain, should be undertaken. The authors              
note that signal processing paradigms apply to image-based CNNs and tapering of time-series before              
Fourier transformation is essential. 
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APPENDIX E
Reproducible Code

E.1 Unsupervised Geological Image
Segmentation

1 import numpy as np
2 from scipy import ndimage
3 import skimage
4 import cv2
5 import numpy as np
6 import matplotlib.pyplot as plt
7 from skimage.morphology import watershed
8 from sklearn.mixture import GaussianMixture
9 from sklearn.preprocessing import normalize

10

11 from PIL import Image

1 plt.rcParams['figure.figsize'] = (10, 10)

1 bsem_grey = cv2.imread('bsem.png',0)

1 def sem_segment(input_image , threshold_low="x", threshold_hi="x",
intraporosity=4):

2 if (threshold_low == "x"):
3 threshold_low = 0
4 if (threshold_hi == "x"):
5 threshold_hi = np.max(input_image)
6 binary_img = (input_image > threshold_low) & (input_image <

threshold_hi)
7 filled_img = ndimage.binary_fill_holes(binary_img)
8

9 inter = ndimage.binary_erosion(filled_img ^ binary_img ,iterations=
intraporosity)

10 label_im, nb_labels = ndimage.label(inter.astype(np.int16))
11 wsfill = watershed(input_image ,label_im ,mask=np.invert(input_image >

threshold*.75))
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12

13 intrapores = ndimage.binary_fill_holes(wsfill.astype(bool))
14

15 filled_img = ndimage.binary_fill_holes(binary_img) ^ intrapores
16

17 eroded_img = ndimage.binary_erosion(filled_img)
18 reconstruct_img = ndimage.binary_propagation(eroded_img , mask=ndimage.

filters.gaussian_filter(binary_img ,10,order=2))
19 tmp = np.invert(reconstruct_img)
20 eroded_tmp = ndimage.binary_erosion(tmp)
21 final_mask = np.invert(ndimage.binary_propagation(eroded_tmp , mask=

ndimage.filters.gaussian_filter(tmp,10,order=2)))
22 return final_mask

1 classif = GaussianMixture(n_components=2,n_init=7)
2 classif.fit(bsem_grey.reshape((bsem_grey.size, 1)))
3 threshold = np.mean(classif.means_)

1 GMM_reconstruct_final = sem_segment(bsem_grey ,threshold_low=threshold*.95)

1 means = classif.means_
2 means_order = np.argsort(means,axis=0)
3 low_mean = np.mean(means[(means_order==0) | (means_order==1)])
4 print("Please check if these are ok mean values.\n", classif.means_)

Please check if these are ok mean values. [[201.98997646] [ 75.80232926]]
1 binary_img = bsem_grey > threshold
2

3 plt.subplot(131)
4 plt.imshow(bsem_grey , cmap='gray')
5 plt.axis('off')
6 plt.subplot(132)
7 plt.imshow(binary_img , cmap='gray')
8 plt.axis('off')
9 plt.subplot(133)

10 plt.imshow(bsem_grey*sem_segment(bsem_grey ,threshold_low=low_mean*.95,
intraporosity=3), cmap='gray')

11 plt.axis('off')
12 plt.savefig('segmentation_small.png')
13 plt.show()
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1 plt.imshow(bsem_grey*sem_segment(bsem_grey ,threshold_low=low_mean*.95,
intraporosity=3),cmap='gray')

2 plt.title('Sediment Map')

1 plt.imshow(bsem_grey*np.invert(sem_segment(bsem_grey ,threshold_low=
low_mean*.95)),cmap='gray')

2 plt.title('Background Map')
3 bsem_grey.shape

1 print("The porosity is {:.2f}%".format(100 * (1-(np.count_nonzero(
GMM_reconstruct_final) /( GMM_reconstruct_final.shape[1] *
GMM_reconstruct_final.shape[0])))))

2

3 The porosity is 45.70\%

1 X = bsem_grey.reshape((bsem_grey.size, 1))
2 flat_classif = GaussianMixture(n_components=2,n_init=7)
3 flat_classif.fit(X)
4 x = np.array(np.linspace(0,255,896*1024)).reshape(-1,1)
5 Z = -flat_classif.score_samples(x)

1 import matplotlib
2 font = {'size' : 18}
3

4 matplotlib.rc('font', **font)
5

6 fig, ax = plt.subplots()
7

8 ax.imshow([[0,1],[0,1]], cmap=plt.cm.gray, interpolation='bicubic', extent
=(0, 255, 5, 7.25), alpha=1)

9

10 ax.plot(x, Z, 'r', label='Negative Log Likelihood')
11 plt.axvline(x=np.mean(classif.means_), label='GMM Decision Boundary')
12 plt.axvline(x=141, color='b', label='Histogram Decision Boundary')
13 plt.legend()
14 plt.title('Negative log-likelihood predicted by a GMM')
15 plt.axis('tight')
16 plt.savefig('GMM_decision_boundary.png', dpi = 200, bbox_inches='tight',

pad_inches = 0)

1 from skimage import measure
2 def disk_structure(n):
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3 struct = np.zeros((2 * n + 1, 2 * n + 1))
4 x, y = np.indices((2 * n + 1, 2 * n + 1))
5 mask = (x - n)**2 + (y - n)**2 <= n**2
6 struct[mask] = 1
7 return struct.astype(np.bool)
8

9

10 def granulometry(data, sizes=None):
11 s = max(data.shape)
12 if sizes is None:
13 sizes = range(1, s//2, 2)
14 granulo = [ndimage.binary_opening(data, \
15 structure=disk_structure(n)).sum() for n in sizes]
16 return granulo

1 label_im, nb_labels = ndimage.label(GMM_reconstruct_final)
2 print("Detected {} grains.".format(nb_labels))
3 sizes = ndimage.sum(GMM_reconstruct_final , label_im , range(nb_labels + 1))
4 mean_vals = ndimage.sum(GMM_reconstruct_final , label_im , range(1,

nb_labels + 1))

Detected 490 grains.
1 opened_small = ndimage.binary_opening(GMM_reconstruct_final , structure=

disk_structure(2))
2 opened = ndimage.binary_opening(GMM_reconstruct_final , structure=

disk_structure(5))
3 opened_more = ndimage.binary_opening(GMM_reconstruct_final , structure=

disk_structure(15))

1 plt.imshow(bsem_grey , cmap=plt.cm.gray)
2 plt.contour(opened, [0.1], colors='deepskyblue', linewidths=2)
3 plt.axis('off')
4 plt.show()

1 plt.imshow(bsem_grey , cmap=plt.cm.gray)
2 plt.contour(opened_more , [0.1], colors='darkorange', linewidths=2)
3 plt.axis('off')
4 plt.show()

1 plt.imshow(bsem_grey , cmap=plt.cm.gray)
2 plt.contour(opened_small , [0.1], colors='darkorange', linewidths=2)
3 plt.axis('off')
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4 plt.savefig('segmentation_small.png')
5 plt.show()

E.1.1 Grain Calculations
1 from skimage import measure
2 scale = 50/1000
3

4 label_im, nb_labels = ndimage.label(opened_small)
5

6 GMM_reconstruct_final
7

8 props = measure.regionprops(label_im)

1 total_area=[]
2 total_diameter=[]
3

4 for p in props:
5 total_area.append(p.area)
6 total_diameter.append(p.equivalent_diameter)

1 plt.hist(np.log(total_area),bins=60)
2 plt.title('Log Distribution of grain sizes')
3 plt.savefig('grain_sizes.png', dpi = 200, bbox_inches='tight', pad_inches

= 0)

1 from math import pi
2 total_error = np.divide(np.subtract(total_area ,np.multiply(total_diameter ,

pi)),total_area)
3 plt.hist(total_error ,bins=60)
4 plt.title('Deviation from circular grain shape.')
5 plt.savefig('circ_dev.png', dpi = 200, bbox_inches='tight', pad_inches =

0)

1 peri = measure.perimeter(GMM_reconstruct_final , neighbourhood=8)
2 print("The perimeter is {:.3f} micrometers.".format(peri*scale))

The perimeter is 4235.111 micrometers.
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E.2 Transfer learning in Automatic Seismic
Interpretation

First we’ll import all the libraries we need down the line. We also set the ”random seed”,
so results can be reproduced by avid readers. Keras should report using the Tensorflow
backend, otherwise reproducibility cannot be guaranteed.

1 import numpy as np
2 import pandas as pd
3 import obspy
4 import keras
5 import time
6 from keras_tqdm import TQDMNotebookCallback
7 from tqdm import tnrange, tqdm_notebook
8 import matplotlib.pyplot as plt
9

10

11 import tensorflow as tf
12 from obspy.io.segy.segy import _read_segy
13 from sklearn.model_selection import train_test_split
14

15 np.random.seed(42)
16 %matplotlib notebook

For experimentation with network models, we keep the keras imports separate, to
reduce loading time.

1 from keras.models import Sequential , Model, clone_model
2 from keras.layers import Conv2D, Dense, Activation , Flatten, Dropout,

Input
3 from keras.layers.normalization import BatchNormalization
4 from keras.preprocessing.image import ImageDataGenerator
5 from keras.optimizers import SGD

We need to define some parameters. As we are using Transfer learning, we have to
adjust these parameters to fit into the network that we use and test.

1 patch_size = 64 # for ResNet50 put 244
2 batch_size = 256
3 num_channels = 1
4 num_classes = 9
5 all_examples = 158812
6 num_examples = 7500
7 epochs = 20
8 steps=450
9 sampler = list(range(all_examples))

10

11 opt = 'adam'
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12 lossfkt = ['categorical_crossentropy']
13 metrica = ['mae', 'acc']

Here we test, whether we are running on CPU or GPU. We want to run on GPU, if
it’s not in the device list. It will be slow.

1 from tensorflow.python.client import device_lib
2 print(device_lib.list_local_devices())
3 # It should say GPU here. Otherwise your model will run sloooow.

E.2.1 Data Loading
Now let’s load the F3 data and read three slices. The labeled data, as well as, a distal
inline and a crossline.

1 filename = 'data/Dutch Government_F3_entire_8bit seismic.segy'
2

3 t0=time.time()
4 stream0 = _read_segy(filename , headonly=True)
5 print('--> data read in {:.1f} sec'.format(time.time()-t0)) #Thanks to

aadm
6

7 t0=time.time()
8

9 labeled_data = np.stack(t.data for t in stream0.traces if t.header.
for_3d_poststack_data_this_field_is_for_in_line_number == 339).T

10 inline_data = np.stack(t.data for t in stream0.traces if t.header.
for_3d_poststack_data_this_field_is_for_in_line_number == 500).T

11 xline_data = np.stack(t.data for t in stream0.traces if t.header.
for_3d_poststack_data_this_field_is_for_cross_line_number == 500).T

12

13 print('--> created slices in {:.1f} sec'.format(time.time()-t0))

E.2.2 Helper Functions
From these slices, we need to extract patches. While, we could do that before and save
them as array or image data, using a generator that utilizes the CPU, while the GPU
trains the network is a bit more storage- and memory-friendly. patch_extractor2D()
automates the patch-extraction and pads sides, where necessary.

Then we build acc_assess() to format our test accuracy assessment nicely, because
we’re lazy and retyping it for every model we build is a nuisance.

All functions are accompanied with a little sanity check. While this is not automated
testing (like TDD), it does help to make sure, our function works as intended.
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1 def patch_extractor2D(img,mid_x,mid_y,patch_size ,dimensions=1):
2 try:
3 x,y,c = img.shape
4 except ValueError:
5 x,y = img.shape
6 c=1
7 patch= np.pad(img, patch_size//2, 'constant', constant_values=0)[mid_y

:mid_y+patch_size ,mid_x:mid_x+patch_size] #because it's padded we
don't subtract half patches all the tim

8 if c != dimensions:
9 tmp_patch = np.zeros((patch_size ,patch_size ,dimensions))

10 for uia in range(dimensions):
11 tmp_patch[:,:,uia] = patch
12 return tmp_patch
13 return patch
14 image=np.random.rand(10,10)//.1
15 print(image)
16

17 patch_extractor2D(image ,10,10,4,1)

1 def acc_assess(data,loss=['categorical_crossentropy'],metrics=['acc']):
2 if not isinstance(loss, list):
3 try:
4 loss = [loss]
5 except:
6 raise("Loss must be list.")
7 if not isinstance(metrics, list):
8 try:
9 metrics = [metrics]

10 except:
11 raise("Metrics must be list.")
12 out='The test loss is {:.3f}\n'.format(data[0])
13 for i, metric in enumerate(metrics):
14 if metric in 'mae':
15 out += "The total mean error on the test is {:.3f}\n".format(

data[i+1])
16 if metric in 'accuracy':
17 out += "The test accuracy is {:.1f}%\n".format(data[i+1]*100)
18 return out
19 print(acc_assess([1,2,3],'bla',["acc", "mae"]))

E.2.3 Exploratory Data Analysis
We need to load and check our labels.

1 labels = pd.read_csv('data/classification.ixz', delimiter=" ", names=["
Inline","Xline","Time","Class"])
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2 labels.describe()

1 labels["Xline"]-=300-1
2 labels["Time"] = labels["Time"]//4
3 labels.describe()

1 labeled_data.shape

1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 vml = np.percentile(labeled_data , 99)
3 img1 = plt.imshow(labeled_data , cmap="Greys", vmin=-vml, vmax=vml, aspect=

'auto')
4 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
5 plt.xlabel('Trace Location')
6 plt.ylabel('Time [ms]')
7 plt.savefig('labeled_data.png', bbox_inches='tight')
8 plt.show()

1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 vmx = np.percentile(xline_data , 99)
3 plt.imshow(xline_data , cmap="Greys", vmin=-vmx, vmax=vmx, aspect='auto')
4 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
5 plt.xlabel('Trace Location')
6 plt.ylabel('Time [ms]')
7 plt.savefig('xline_data.png', bbox_inches='tight')
8 plt.show()

1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 vmy = np.percentile(inline_data , 99)
3 plt.imshow(inline_data , cmap="Greys", vmin=-vmy, vmax=vmy, aspect='auto')
4 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
5 plt.xlabel('Trace Location')
6 plt.ylabel('Time [ms]')
7 plt.savefig('inline_data.png', bbox_inches='tight')
8 plt.show()

1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 img2 = plt.imshow(labeled_data , cmap="Greys", vmin=-vml, vmax=vml, aspect=

'auto')
3 img1 = plt.scatter(labels["Xline"],labels[["Time"]],c=labels[["Class"]],

cmap='Dark2',alpha=0.03)
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4 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
5 plt.xlabel('Trace Location')
6 plt.ylabel('Time [ms]')
7 plt.savefig('label.png', bbox_inches='tight')
8 plt.show()

E.2.4 Train the Network
Now we perform a test-train split. Then we can validate the results of our experiment.

1 train_data , test_data , train_samples , test_samples = train_test_split(
2 labels, sampler, random_state=42)
3 print(train_data.shape,test_data.shape)

This is the ‘keras‘ data generator that wraps the ‘patch_extractor2D()‘.
1 class SeismicSequence(keras.utils.Sequence):
2 def __init__(self, img, x_set, t_set, y_set, patch_size , batch_size ,

dimensions):
3 self.slice = img
4 self.X,self.t = x_set,t_set
5 self.batch_size = batch_size
6 self.patch_size = patch_size
7 self.dimensions = dimensions
8 self.label = y_set
9

10 def __len__(self):
11 return len(self.X) // self.batch_size
12

13 def __getitem__(self,idx):
14 sampler = np.random.permutation(len(self.X))
15 samples = sampler[idx*self.batch_size:(idx+1)*self.batch_size]
16 labels = keras.utils.to_categorical(self.label[samples],

num_classes=9)
17 if self.dimensions == 1:
18 return np.expand_dims(np.array([patch_extractor2D(self.slice,

self.X[x],self.t[x],self.patch_size ,self.dimensions) for x
in samples]), axis=4), labels

19 else:
20 return np.array([patch_extractor2D(self.slice,self.X[x],self.t

[x],self.patch_size ,self.dimensions) for x in samples]),
labels

We define several callbacks for keras. The training should be stopped early, if the
validation loss or the categorical cross entropy do not improve within the defined patience.
Checkpoints are written to ‘tmp.h5‘ for every epoch.
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1 earlystop1 = keras.callbacks.EarlyStopping(monitor='val_loss',
2 min_delta=0,
3 patience=3,
4 verbose=0, mode='auto')
5

6 earlystop2 = keras.callbacks.EarlyStopping(monitor='val_acc',
7 min_delta=0,
8 patience=3,
9 verbose=0, mode='auto')

10

11 checkpoint = keras.callbacks.ModelCheckpoint('tmp.h5',
12 monitor='val_loss',
13 verbose=0,
14 save_best_only=False,
15 save_weights_only=False,
16 mode='auto',
17 period=1)
18

19 callbacklist = [TQDMNotebookCallback(leave_inner=True, leave_outer=True),
earlystop1 , earlystop2 , checkpoint]

E.2.5 Waldeland CNN
The model introduced by Waldeland, reproduced from MalenoV. Compared to today’s
standards this is a relatively shallow CNN. We train the network from scratch.

1 tf.logging.set_verbosity(tf.logging.ERROR)
2

3 model_vanilla = Sequential()
4 model_vanilla.add(Conv2D(50, (5, 5), padding='same', input_shape=(

patch_size ,patch_size ,1), strides=(4, 4), data_format="channels_last",
name = 'conv_layer1'))

5 model_vanilla.add(BatchNormalization())
6 model_vanilla.add(Activation('relu'))
7 model_vanilla.add(Conv2D(50, (3, 3), strides=(2, 2), padding = 'same',name

= 'conv_layer2'))
8 model_vanilla.add(Dropout(0.5))
9 model_vanilla.add(BatchNormalization())

10 model_vanilla.add(Activation('relu'))
11 model_vanilla.add(Conv2D(50, (3, 3), strides=(2, 2), padding= 'same',name

= 'conv_layer3'))
12 model_vanilla.add(Dropout(0.4))
13 model_vanilla.add(BatchNormalization())
14 model_vanilla.add(Activation('relu'))
15 model_vanilla.add(Conv2D(50, (3, 3), strides=(2, 2), padding= 'same',name

= 'conv_layer4'))
16 model_vanilla.add(Dropout(0.2))
17 model_vanilla.add(BatchNormalization())
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18 model_vanilla.add(Activation('relu'))
19 model_vanilla.add(Conv2D(50, (3, 3), strides=(2, 2), padding= 'same',name

= 'conv_layer5'))
20 model_vanilla.add(Flatten())
21 model_vanilla.add(Dense(50,name = 'dense_layer1'))
22 model_vanilla.add(BatchNormalization())
23 model_vanilla.add(Activation('relu'))
24 model_vanilla.add(Dense(10,name = 'attribute_layer'))
25 model_vanilla.add(BatchNormalization())
26 model_vanilla.add(Activation('relu'))
27 model_vanilla.add(Dense(num_classes , name = 'pre-softmax_layer'))
28 model_vanilla.add(BatchNormalization())
29 model_vanilla.add(Activation('softmax'))
30

31 model_vanilla.compile(loss=lossfkt,
32 optimizer=opt,
33 metrics=metrica)

1 t0=time.time()
2

3 hist_vanilla = model_vanilla.fit_generator(
4 SeismicSequence(
5 labeled_data ,
6 train_data["Xline"].values,
7 train_data["Time"].values,
8 train_data["Class"].values,
9 patch_size ,

10 batch_size ,
11 1),
12 steps_per_epoch=steps,
13 validation_data = SeismicSequence(
14 labeled_data ,
15 test_data["Xline"].values,
16 test_data["Time"].values,
17 test_data["Class"].values,
18 patch_size ,
19 batch_size ,
20 1),
21 validation_steps = len(test_samples)//batch_size ,
22 epochs = epochs,
23 verbose = 0,
24 callbacks = callbacklist)
25

26 print('--> Training for Waldeland CNN took {:.1f} sec'.format(time.time()-
t0)) #Thanks to aadm

1 model_vanilla.save("vanilla_model.h5")
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1 vanillascore=model_vanilla.evaluate(np.expand_dims(np.array([
patch_extractor2D(labeled_data ,labels["Xline"][x],labels["Time"][x],64)

for x in test_samples]), axis=4),keras.utils.to_categorical(labels["
Class"][test_samples], num_classes=9), verbose=0)

2 print(acc_assess(vanillascore ,lossfkt,metrica))

Looking at the metric on training as well as validation gives a good overview, if we
are doing appropriate training or if we are overfitting.

1 print(hist_vanilla.history.keys())
2 plt.plot(hist_vanilla.history['acc'])
3 plt.plot(hist_vanilla.history['val_acc'])
4 plt.title('model accuracy')
5 plt.ylabel('accuracy')
6 plt.xlabel('epoch')
7 plt.legend(['train', 'test'], loc='upper left')
8 plt.show()

1 # summarize history for loss
2 plt.plot(hist_vanilla.history['loss'])
3 plt.plot(hist_vanilla.history['val_loss'])
4 plt.title('model loss')
5 plt.ylabel('loss')
6 plt.xlabel('epoch')
7 plt.legend(['train', 'test'], loc='upper left')
8 plt.show()

1 t_max, y_max = xline_data.shape
2

3 half_patch = patch_size//2
4

5 predx = np.full_like(xline_data ,-1)
6

7 for space in tqdm_notebook(range(y_max),desc='Space'):
8 for depth in tqdm_notebook(range(t_max),leave=False, desc='Time'):
9 predx[depth,space] = np.argmax(model_vanilla.predict(np.

expand_dims(np.expand_dims(patch_extractor2D(xline_data ,space,
depth,patch_size), axis=0), axis=4)))

1 np.save('vanilla_predx.npy',predx,allow_pickle=False)
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1 plt.imshow(predx)

1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 img2 = plt.imshow(xline_data , cmap="Greys", vmin=-vmx, vmax=vmx, aspect='

auto')
3 img1 = plt.imshow(predx, aspect='auto', cmap="Dark2", alpha=0.5)
4 plt.savefig('pred1_x.png', bbox_inches='tight')
5 plt.show()

1 t_max, y_max = inline_data.shape
2

3 half_patch = patch_size//2
4

5 predi= np.full_like(inline_data ,-1)
6

7 for space in tqdm_notebook(range(y_max),desc='Space'):
8 for depth in tqdm_notebook(range(t_max),leave=False, desc='Time'):
9 predi[depth,space] = np.argmax(model_vanilla.predict(np.

expand_dims(np.expand_dims(patch_extractor2D(inline_data ,space,
depth,patch_size), axis=0), axis=4)))

1 np.save('vanilla_predi.npy',predi,allow_pickle=False)

1 predi = np.load('vanilla_predi.npy')
2 plt.imshow(predi)

1 np.save('vanilla_predi.npy',predi,allow_pickle=False)
2 fig2 = plt.figure(figsize=(15.0, 10.0))
3 img2 = plt.imshow(inline_data , cmap="Greys", vmin=-vmy, vmax=vmy, aspect='

auto')
4 img1 = plt.imshow(predi, aspect='auto', cmap="Dark2", alpha=0.5)
5 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
6 plt.xlabel('Trace Location')
7 plt.ylabel('Time [ms]')
8 plt.savefig('pred1_i.png', bbox_inches='tight')
9 plt.show()
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E.2.6 VGG16 Transfer Learning
We import the VGG16 model trained on the ImageNet dataset. We freeze all layers and
cut off the classification part. We can then retrain the classification neurons, to see if
the filters generalize to seismic data.

1 from keras.applications.vgg16 import VGG16
2 from keras import backend as K
3 K.set_image_dim_ordering('tf')

1 input_tensor = Input(shape=(patch_size ,patch_size ,3))
2 base_model = keras.applications.vgg16.VGG16(include_top=False, weights='

imagenet', input_tensor=input_tensor , input_shape=None)
3

4 for layer in base_model.layers[:8]:
5 layer.trainable = False

1 x = base_model.output
2 x = Flatten()(x)
3 x = Dense(256,name = 'dense_layer1')(x)
4 x = BatchNormalization()(x)
5 x = Activation('relu')(x)
6 x = Dropout(.5)(x)
7 x = Dense(num_classes , name = 'pre-softmax_layer')(x)
8 x = BatchNormalization()(x)
9 x = Activation('softmax')(x)

10

11 vgg = Model(input=base_model.input, output=x)

1 sgd = SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True)
2 vgg.compile(loss=lossfkt,
3 optimizer=sgd,
4 metrics=metrica)

1 t0 = time.time()
2

3 vgg_hist = vgg.fit_generator(
4 SeismicSequence(
5 labeled_data ,
6 train_data["Xline"].values,
7 train_data["Time"].values,
8 train_data["Class"].values,
9 patch_size ,

10 batch_size ,
11 3),
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12 steps_per_epoch=steps,
13 validation_data = SeismicSequence(
14 labeled_data ,
15 test_data["Xline"].values,
16 test_data["Time"].values,
17 test_data["Class"].values,
18 patch_size ,
19 batch_size ,
20 3),
21 validation_steps = len(test_data)//batch_size ,
22 epochs = epochs,
23 verbose = 0,
24 callbacks = callbacklist)
25

26 print('--> Training for VGG transfer took {:.1f} sec'.format(time.time()-
t0))

1 vgg.save('vgg_model.h5')

1 vggscore=vgg.evaluate(np.array([patch_extractor2D(labeled_data ,labels["
Xline"][x],labels["Time"][x],64,3) for x in test_samples]), keras.utils
.to_categorical(labels["Class"][test_samples], num_classes=9))

2 print(acc_assess(vggscore ,lossfkt,metrica))

1 print(hist_vanilla.history.keys())
2 plt.plot(vgg_hist.history['acc'])
3 plt.plot(vgg_hist.history['val_acc'])
4 plt.title('model accuracy')
5 plt.ylabel('accuracy')
6 plt.xlabel('epoch')
7 plt.legend(['train', 'test'], loc='upper left')
8 plt.show()

1 # summarize history for loss
2 plt.plot(vgg_hist.history['loss'])
3 plt.plot(vgg_hist.history['val_loss'])
4 plt.title('model loss')
5 plt.ylabel('loss')
6 plt.xlabel('epoch')
7 plt.legend(['train', 'test'], loc='upper left')
8 plt.show()
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1 t_max, y_max = xline_data.shape
2

3 half_patch = patch_size//2
4

5 vgg_predx = np.full_like(xline_data ,-1)
6

7 for space in tqdm_notebook(range(y_max),desc='Space'):
8 for depth in tqdm_notebook(range(t_max),leave=False, desc='Time'):
9 vgg_predx[depth,space] = np.argmax(vgg.predict(np.expand_dims(

patch_extractor2D(xline_data ,space,depth,patch_size ,3), axis=0)
))

1 np.save('vgg_predx.npy',vgg_predx ,allow_pickle=False)

1 plt.imshow(vgg_predx)

1 vgg_predx=np.load('vgg_predx.npy')
2 fig2 = plt.figure(figsize=(15.0, 10.0))
3 img2 = plt.imshow(xline_data , cmap="Greys", vmin=-vmx, vmax=vmx, aspect='

auto')
4 img1 = plt.imshow(vgg_predx , aspect='auto', cmap="Dark2", alpha=0.5)
5 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
6 plt.xlabel('Trace Location')
7 plt.ylabel('Time [ms]')
8 plt.savefig('vgg1_x.png', bbox_inches='tight')
9 plt.show()

1 t_max, y_max = inline_data.shape
2

3 half_patch = patch_size//2
4

5 vgg_predi = np.full_like(inline_data ,-1)
6

7 for space in tqdm_notebook(range(y_max),desc='Space'):
8 for depth in tqdm_notebook(range(t_max),leave=False, desc='Time'):
9 vgg_predi[depth,space] = np.argmax(vgg.predict(np.expand_dims(

patch_extractor2D(inline_data ,space,depth,patch_size ,3), axis
=0)))

1 np.save('vgg_predi.npy',vgg_predi ,allow_pickle=False)
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1 plt.imshow(vgg_predi)

1 vgg_predi= np.load('vgg_predi.npy')
2 fig2 = plt.figure(figsize=(15.0, 10.0))
3 img2 = plt.imshow(inline_data , cmap="Greys", vmin=-vmy, vmax=vmy, aspect='

auto')
4 img1 = plt.imshow(vgg_predi , aspect='auto', cmap="Dark2", alpha=0.5)
5 plt.yticks(np.arange(0, 462, 100), np.arange(0, 462*4, 400))
6 plt.xlabel('Trace Location')
7 plt.ylabel('Time [ms]')
8 plt.savefig('vgg1_i.png', bbox_inches='tight')
9 plt.show()

E.2.7 ResNet50 Transfer Learning
We import the ResNet50 that was trained on the ImageNet data and freeze all layers,
like we did for the VGG16. Then we retrain the classifier to see if the learned filters
generalize on seismic data.

1 from keras.applications.resnet50 import ResNet50
2 from keras import backend as K
3 K.set_image_dim_ordering('tf')
4 patch_size=244

1 input_tensor = Input(shape=(patch_size ,patch_size ,3))
2 res_base = ResNet50(include_top=False, weights='imagenet', input_tensor=

input_tensor , input_shape=None, pooling=None)
3

4 for layer in res_base.layers[:45]:
5 layer.trainable = False

1 q = res_base.output
2 q = Flatten()(q)
3 q = BatchNormalization()(q)
4 q = Activation('relu')(q)
5 q = Dense(10,name = 'attribute_layer')(q)
6 q = BatchNormalization()(q)
7 q = Activation('relu')(q)
8 q = Dense(num_classes , name = 'pre-softmax_layer')(q)
9 q = BatchNormalization()(q)

10 q = Activation('softmax')(q)
11 resnet = Model(input=res_base.input, output=q)
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1 sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
2 resnet.compile(loss=lossfkt,
3 optimizer=sgd,
4 metrics=metrica)

1 t0 = time.time()
2

3 batch_size=50
4 res_hist = resnet.fit_generator(
5 SeismicSequence(
6 labeled_data ,
7 train_data["Xline"].values,
8 train_data["Time"].values,
9 train_data["Class"].values,

10 patch_size ,
11 batch_size ,
12 3),
13 steps_per_epoch=steps,
14 validation_data = SeismicSequence(
15 labeled_data ,
16 test_data["Xline"].values,
17 test_data["Time"].values,
18 test_data["Class"].values,
19 patch_size ,
20 batch_size ,
21 3),
22 validation_steps = len(test_data)//batch_size ,
23 epochs = epochs,
24 verbose = 0,
25 callbacks = callbacklist)
26

27 print('--> Training for ResNet transfer took {:.1f} sec'.format(time.time
()-t0))

1 resnet.save('resnet_model.h5')

1 resnetscore=resnet.evaluate(np.array([patch_extractor2D(labeled_data ,
labels["Xline"][x],labels["Time"][x],patch_size ,3) for x in
test_samples]), keras.utils.to_categorical(labels["Class"][test_samples
], num_classes=9))

2 print(acc_assess(resnetscore ,lossfkt,metrica))
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1 t_max, y_max = xline_data.shape
2

3 half_patch = patch_size//2
4

5 resnet_predx = np.full_like(xline_data ,-1)
6

7 for space in tqdm_notebook(range(y_max),desc='Space'):
8 for depth in tqdm_notebook(range(t_max),leave=False, desc='Time'):
9 resnet_predx[depth,space] = np.argmax(resnet.predict(np.

expand_dims(patch_extractor2D(xline_data ,space,depth,patch_size
,3), axis=0)))

1 np.save('resnet_predx.npy',resnet_predx ,allow_pickle=False)

1 plt.imshow(resnet_predx)

1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 img2 = plt.imshow(xline_data , cmap="Greys", vmin=-vmx, vmax=vmx, aspect='

auto')
3 img1 = plt.imshow(resnet_predx , aspect='auto', cmap="Dark2", alpha=0.8)
4 plt.savefig('resnet_x.png', bbox_inches='tight')
5 plt.show()

1 t_max, y_max = inline_data.shape
2

3 half_patch = patch_size//2
4

5 resnet_predi = np.full_like(inline_data ,-1)
6

7 for space in tqdm_notebook(range(y_max -400,y_max -300),desc='Space'):
8 for depth in tqdm_notebook(range(t_max -400,t_max -300),leave=False,

desc='Time'):
9 resnet_predi[depth,space] = np.argmax(resnet.predict(np.

expand_dims(patch_extractor2D(inline_data ,space,depth,
patch_size ,3), axis=0)))

1 np.save('resnet_predi.npy',resnet_predi ,allow_pickle=False)

1 plt.imshow(resnet_predi)
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1 fig2 = plt.figure(figsize=(15.0, 10.0))
2 img2 = plt.imshow(inline_data , cmap="Greys", vmin=-vmy, vmax=vmy, aspect='

auto')
3 img1 = plt.imshow(resnet_predi , aspect='auto', cmap="Dark2", alpha=0.8)
4 plt.savefig('resnet_i.png', bbox_inches='tight')
5 plt.show()

1 print(res_hist.history.keys())
2 plt.plot(res_hist.history['acc'])
3 plt.plot(res_hist.history['val_acc'])
4 plt.title('model accuracy')
5 plt.ylabel('accuracy')
6 plt.xlabel('epoch')
7 plt.legend(['train', 'test'], loc='upper left')
8 plt.show()

1 # summarize history for loss
2 plt.plot(res_hist.history['loss'])
3 plt.plot(res_hist.history['val_loss'])
4 plt.title('model loss')
5 plt.ylabel('loss')
6 plt.xlabel('epoch')
7 plt.legend(['train', 'test'], loc='upper left')
8 plt.show()

1 plot_model(resnet, to_file='model_resnet.png')
2 plot_model(resnet, to_file='model_resnet_shapes.png', show_shapes=True)
3 SVG(model_to_dot(resnet).create(prog='dot', format='svg'))

E.2.8 Model Summary
We can see the summaries of the layers in the model definitions. Leveraging high-
dimensional CNNs that are already trained can be very valuable.

1 model_vanilla.summary()

1 vgg.summary()
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1 resnet.summary()

E.3 Complex-valued neural networks
1 import numpy as np
2 from skimage.util.shape import view_as_windows
3 from skimage.io import imsave
4 from scipy.signal import hilbert
5

6 # Load Data
7 # Get it here: https://github.com/olivesgatech/

facies_classification_benchmark
8 # Original here: https://terranubis.com/datainfo/Netherlands -Offshore -F3-

Block-Complete
9 train_seismic = np.load("data/train/train_seismic.npy")

10

11 # Calculate Complex traces
12 train_hilbert = np.zeros_like(train_seismic , dtype=np.complex)
13 for x in range(train_hilbert.shape[0]):
14 for y in range(train_hilbert.shape[1]):
15 train_hilbert[x,y,:] = hilbert(train_seismic[x,y,:])
16

17 train_complex = train_hilbert
18 train_complex = train_hilbert -train_seismic
19

20 # Generate Patch Data
21 patch_size = 64
22 patch_size = 64
23

24 stride = 8
25

26 patch_shape = (1, patch_size , patch_size)
27

28 real_data = view_as_windows(train_seismic , patch_shape , step=stride)
29 cmplx_data = view_as_windows(train_complex , patch_shape , step=stride)
30

31 # Train - Validation Split
32 p = .9
33 val_split = np.random.choice(a=[False, True], size=real_data.shape[0:3], p

=[p, 1-p])
34

35 # Inline Data
36 real = []
37 cmplx = []
38

39 for a in range(real_data.shape[0]):
40 for b in range(real_data.shape[1]):
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41 for c in range(real_data.shape[2]):
42 real.append(np.squeeze(real_data[a,b,c,0,:,:]).T)
43 cmplx_patch = np.squeeze(cmplx_data[a,b,c,0,:,:]).T
44 cmplx.append(np.stack([np.real(cmplx_patch), np.imag(

cmplx_patch)], axis=2))
45

46 np.save('patch_data/i_real.npy', real)
47 np.save('patch_data/i_cmplx.npy', cmplx)
48

49 # Crossline Data
50 patch_shape = (patch_size , 1, patch_size)
51

52 real_data = view_as_windows(train_seismic , patch_shape , step=stride)
53 cmplx_data = view_as_windows(train_complex , patch_shape , step=stride)
54

55 real = []
56 cmplx = []
57

58 for a in range(real_data.shape[0]):
59 for b in range(real_data.shape[1]):
60 for c in range(real_data.shape[2]):
61 real.append(np.squeeze(real_data[a,b,c,:,0,:]).T)
62 cmplx_patch = np.squeeze(cmplx_data[a,b,c,:,0,:]).T
63 cmplx.append(np.stack([np.real(cmplx_patch), np.imag(

cmplx_patch)], axis=2))
64

65 np.save('patch_data/x_real.npy', real)
66 np.save('patch_data/x_cmplx.npy', cmplx)

1 import os
2 os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
3 os.environ["CUDA_VISIBLE_DEVICES"]="4,5,6,7"
4

5 import numpy as np
6 from sklearn.model_selection import train_test_split
7

8 import complexnn
9

10 import keras
11 from keras import models
12 from keras import layers
13 from keras import optimizers
14 from keras.utils import multi_gpu_model
15

16 act_fn = 'elu'
17

18 def CAE(input_shape=None, x=0):
19

20 model = models.Sequential()
21 # Block 1
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22 model.add(complexnn.conv.ComplexConv2D(2**(x+1), (3, 3), activation=
act_fn, padding='same', input_shape=input_shape))

23 model.add(complexnn.conv.ComplexConv2D(2**(x+1), (3, 3), strides=(2,2)
, activation=act_fn, padding='same'))

24 model.add(complexnn.bn.ComplexBatchNormalization())
25 model.add(complexnn.conv.ComplexConv2D(2**(x+2), (3, 3), strides=(2,2)

, activation=act_fn, padding='same'))
26 model.add(complexnn.bn.ComplexBatchNormalization())
27 model.add(complexnn.conv.ComplexConv2D(2**(x+3), (3, 3), strides=(2,2)

, activation=act_fn, padding='same'))
28 model.add(complexnn.bn.ComplexBatchNormalization())
29 model.add(complexnn.conv.ComplexConv2D(2**(x+4), (3, 3), strides=(2,2)

, activation=act_fn, padding='same'))
30 model.add(complexnn.bn.ComplexBatchNormalization())
31

32 model.add(complexnn.conv.ComplexConv2D(2**(x+5), (3, 3), activation=
act_fn, padding='same'))

33

34 model.add(complexnn.conv.ComplexConv2D(2**(x+4), (3, 3), strides=(2,2)
, transposed=True, activation=act_fn, padding='same'))

35 model.add(complexnn.bn.ComplexBatchNormalization())
36 model.add(complexnn.conv.ComplexConv2D(2**(x+3), (3, 3), strides=(2,2)

, transposed=True, activation=act_fn, padding='same'))
37 model.add(complexnn.bn.ComplexBatchNormalization())
38 model.add(complexnn.conv.ComplexConv2D(2**(x+2), (3, 3), strides=(2,2)

, transposed=True, activation=act_fn, padding='same'))
39 model.add(complexnn.bn.ComplexBatchNormalization())
40 model.add(complexnn.conv.ComplexConv2D(2**(x+1), 3, strides=(2,2),

transposed=True, activation = act_fn, padding = 'same'))
41 model.add(complexnn.bn.ComplexBatchNormalization())
42 model.add(complexnn.conv.ComplexConv2D(2**(x+1), 3, activation =

act_fn, padding = 'same'))
43 model.add(complexnn.conv.ComplexConv2D(1 , 3, activation = act_fn,

padding = 'same'))
44 return model
45

46 def RAE(input_shape=None,x=0):
47

48 model = models.Sequential()
49 model.add(layers.Conv2D(2**(x+1), (3, 3), activation=act_fn, padding='

same', kernel_initializer = 'he_normal', input_shape=input_shape))
50 model.add(layers.Conv2D(2**(x+1), (3, 3), activation=act_fn, strides

=(2,2), padding='same', kernel_initializer = 'he_normal'))
51 model.add(layers.BatchNormalization())
52 model.add(layers.Conv2D(2**(x+2), (3, 3), activation=act_fn, strides

=(2,2), padding='same', kernel_initializer = 'he_normal'))
53 model.add(layers.BatchNormalization())
54 model.add(layers.Conv2D(2**(x+3), (3, 3), activation=act_fn, strides

=(2,2), padding='same', kernel_initializer = 'he_normal'))
55 model.add(layers.BatchNormalization())
56 model.add(layers.Conv2D(2**(x+4), (3, 3), activation=act_fn, strides

=(2,2), padding='same', kernel_initializer = 'he_normal'))
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57 model.add(layers.BatchNormalization())
58 model.add(layers.Conv2D(2**(x+5), (3, 3), activation=act_fn, padding='

same', kernel_initializer = 'he_normal'))
59 model.add(layers.Conv2DTranspose(2**(x+4), (3, 3), activation=act_fn,

strides=(2,2), padding='same', kernel_initializer = 'he_normal'))
60 model.add(layers.BatchNormalization())
61 model.add(layers.Conv2DTranspose(2**(x+3), (3, 3), activation=act_fn,

strides=(2,2), padding='same', kernel_initializer = 'he_normal'))
62 model.add(layers.BatchNormalization())
63 model.add(layers.Conv2DTranspose(2**(x+2), (3, 3), activation=act_fn,

strides=(2,2), padding='same', kernel_initializer = 'he_normal'))
64 model.add(layers.BatchNormalization())
65 model.add(layers.Conv2DTranspose(2**(x+1), 3, activation=act_fn,

strides=(2,2), padding='same', kernel_initializer = 'he_normal'))
66 model.add(layers.BatchNormalization())
67 model.add(layers.Conv2D(2**(x+1), 3, activation=act_fn, padding='same'

, kernel_initializer = 'he_normal'))
68 model.add(layers.Conv2D(1, (3, 3), activation=act_fn, padding='same',

kernel_initializer = 'he_normal'))
69 return model
70

71 def par_train(X_train,X_test,model,filename):
72 par_model = multi_gpu_model(model, gpus=4)
73

74 par_model.compile(optimizer=optimizers.Adam(), loss='mse', metrics=["
mae"])

75

76 csv_cb = keras.callbacks.CSVLogger('../logs/'+filename+'.csv')
77

78 par_model.fit(X_train,
79 X_train,
80 epochs=100,
81 verbose=2,
82 batch_size=16,
83 shuffle=True,
84 validation_data=(X_test, X_test),
85 callbacks=[csv_cb])
86

87 par_model.save(filename+'.hd5')
88

89 def print_summary(model, filename):
90 with open('../descriptions/'+filename + '_report.txt','w') as fh:
91 # Pass the file handle in as a lambda function to make it callable
92 model.summary(print_fn=lambda x: fh.write(x + '\n'))
93

94

95 print('===================\n===Data Loading====\n===================')
96 cmplx = np.concatenate([np.load("../patch_data/x_cmplx.npy"), np.load("../

patch_data/i_cmplx.npy")])
97 real = np.concatenate([np.expand_dims(np.load('../patch_data/i_real.npy'),

axis=3), np.expand_dims(np.load('../patch_data/x_real.npy'), axis=3)])
98
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99 print('===================\n==Data Splitting==\n===================')
100 X_train_cmplx , X_test_cmplx , X_train_real , X_test_real , = train_test_split

(cmplx, real, test_size=0.25, random_state=42)
101 del(cmplx)
102 del(real)
103

104 print('===================\n===Print Summary===\n===================')
105

106 print_summary(CAE((64,64,2),0), 'cmplx_mini')
107 print_summary(CAE((64,64,2),1), 'cmplx_small')
108 print_summary(CAE((64,64,2),2), 'cmplx_big')
109 print_summary(RAE((64,64,1),1), 'real_mini')
110 print_summary(RAE((64,64,1),2), 'real_small')
111 print_summary(RAE((64,64,1),3), 'real_big')
112

113

114 print('===================\n=======Train=======\n===================')
115 for common_seed in [33,42,12345,914872,552926,175937,528286]:
116 #for common_seed in [33,]:
117 from tensorflow import set_random_seed
118 np.random.seed(common_seed)
119 set_random_seed(common_seed)
120

121 import complexnn
122

123 import keras
124 from keras import models
125 from keras import layers
126 from keras import optimizers
127 from keras.utils import multi_gpu_model
128

129 #print('===================\n=====Train R 0====\n===================')
130 #par_train(X_train_real , X_test_real ,RAE((None,None,1),1),'real_mini')

# Real Mini
131 print('===================\n=====Train R S====\n===================')
132 par_train(X_train_real , X_test_real ,RAE((None,None,1),2),'real_small')

# Real Small
133 print('===================\n=====Train C S====\n===================')
134 par_train(X_train_cmplx , X_test_cmplx ,CAE((None,None,2),1),'

cmplx_small') # Complex Small
135 print('===================\n=====Train C L====\n===================')
136 par_train(X_train_cmplx , X_test_cmplx ,CAE((None,None,2),2),'cmplx_big'

) # Complex Large
137 print('===================\n=====Train R L====\n===================')
138 par_train(X_train_real , X_test_real ,RAE((None,None,1),3),'real_large')

# Real Large
139 #print('===================\n=====Train C 0====\n===================')
140 #par_train(X_train_cmplx , X_test_cmplx ,CAE((None,None,2),0),'

cmplx_mini') # Complex Mini

1 import keras
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2 import numpy as np
3 import complexnn
4

5 from sklearn.model_selection import train_test_split
6

7 CCAE = keras.models.load_model(
8 "cmplx_big33.hd5",
9 custom_objects={

10 "ComplexConv2D": complexnn.conv.ComplexConv2D ,
11 "ComplexBatchNormalization": complexnn.bn.

ComplexBatchNormalization ,
12 },
13 )
14

15 sCCAE = keras.models.load_model(
16 "cmplx_small33.hd5",
17 custom_objects={
18 "ComplexConv2D": complexnn.conv.ComplexConv2D ,
19 "ComplexBatchNormalization": complexnn.bn.

ComplexBatchNormalization ,
20 },
21 )
22

23

24 RCAE = keras.models.load_model("real_small33.hd5")
25 bRCAE = keras.models.load_model("real_big33.hd5")
26

27

28 big_seismic = np.rot90(np.load("../data/test_once/test1_seismic.npy")
[0:1,:,:], axes=(1,2), k=3)

29

30 from scipy.signal import hilbert
31 tmp_complex = hilbert(np.squeeze(big_seismic), axis=0)
32 big_complex = np.expand_dims(np.stack([np.real(tmp_complex), np.imag(

tmp_complex)],axis=2),axis=0)
33

34

35 bc_pred = np.squeeze(CCAE.predict(big_complex))[:255,:701]
36 sc_pred = np.squeeze(sCCAE.predict(big_complex))[:255,:701]
37

38 sr_pred = np.squeeze(RCAE.predict(np.expand_dims(big_seismic ,axis=3)))
[:255,:701]

39 br_pred = np.squeeze(bRCAE.predict(np.expand_dims(big_seismic ,axis=3)))
[:255,:701]

40

41 np.savez('predictions.npz', truth=big_seismic[0], small_complex=sc_pred[:,
:, 0], big_complex=bc_pred[:, :, 0], small_real=np.squeeze(sr_pred),

big_real=np.squeeze(br_pred))

1 import numpy as np
2 from scipy import fftpack
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3 import matplotlib.pyplot as plt
4 import matplotlib.patches as patches
5

6

7 # Load data
8 keys = ['truth', 'small_complex', 'small_real', 'big_complex', 'big_real']
9

10 with np.load("predictions.npz") as data:
11 x,y = data['truth'].shape
12 seismic = np.zeros((x,y,5))
13 for i, q in enumerate(keys):
14 seismic[:,:,i] = data[q]
15

16 # Prepare Patches
17 f3_offset = 0.832 # Top crop of data
18

19 bottom_xt = [350,675,130,250]
20 top_xt = [50,300,30,100]
21 silent_xt = [500, 695,70, 120]
22

23 bottom = seismic[bottom_xt[2]:bottom_xt[3],bottom_xt[0]:bottom_xt[1],:]
24 top = seismic[top_xt[2]:top_xt[3],top_xt[0]:top_xt[1],:]
25 silent = seismic[silent_xt[2]:silent_xt[3],silent_xt[0]:silent_xt[1],:]
26

27 # Generate annotated ground truth
28 fig, ax = plt.subplots(figsize=(20,7))
29 im = ax.imshow(seismic[:,:,0], vmin=-1, vmax=1, aspect='auto', extent=[0,

seismic.shape[1]*25,seismic.shape[0]*.004+f3_offset ,f3_offset])
30 ax.set_title("Full Seismic Data")
31 ax.set_ylabel("Time [s]")
32 ax.set_xlabel("Offset [m]")
33

34 bc = 'k'
35 tc = 'w'
36 sc = 'r'
37

38 brect = patches.Rectangle((bottom_xt[0]*25,bottom_xt[2]*0.004+f3_offset),(
bottom_xt[1]-bottom_xt[0])*25,(bottom_xt[3]-bottom_xt[2])*0.004,
linewidth=1.25, edgecolor=bc,facecolor='none')

39 trect = patches.Rectangle((top_xt[0]*25,top_xt[2]*0.004+f3_offset),(top_xt
[1]-top_xt[0])*25,(top_xt[3]-top_xt[2])*0.004,linewidth=1, edgecolor=tc
,facecolor='none')

40 srect = patches.Rectangle((silent_xt[0]*25,silent_xt[2]*0.004+f3_offset),(
silent_xt[1]-silent_xt[0])*25,(silent_xt[3]-silent_xt[2])*0.004,
linewidth=1, edgecolor=sc,facecolor='none')

41

42 # Add the patch to the Axes
43 ax.add_patch(brect)
44 ax.add_patch(trect)
45 ax.add_patch(srect)
46

47 ax.annotate('Top', ((top_xt[0]+10)*25,f3_offset+(top_xt[2]+10)*0.004),
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color=tc, weight='bold', fontsize=16, ha='left', va='center')
48 ax.annotate('Bottom', ((bottom_xt[0]+10)*25,f3_offset+(bottom_xt[2]+10)

*0.004), color=bc, weight='bold', fontsize=16, ha='left', va='center')
49 ax.annotate('Silent', ((silent_xt[0]+10)*25,f3_offset+(silent_xt[2]+10)

*0.004), color=sc, weight='bold', fontsize=16, ha='left', va='center')
50

51 fig.colorbar(im, ax=ax)
52 fig.tight_layout()
53 # fig.show()
54 fig.savefig(f"figures/seismic.png", bbox_inches='tight', dpi=200)
55

56 plt.imshow(seismic[:,:,0])
57

58 plt.imshow(seismic[50:150,500:,0])
59

60

61 def rms(a,b):
62 return np.sqrt(np.power(a-b,2).mean())
63

64 def mae(a,b):
65 return np.abs(a-b).mean()
66

67 def format_seis(data, keys, keyword=""):
68 for i in range(data.shape[-1]):
69 print(f"{keys[i]:13s} {keyword}:\t | RMS: {rms(data[:,:,0],data

[:,:,i]):.4f}\t | MAE: {mae(data[:,:,0],data[:,:,i]):.4f}")
70

71 def plot_seis(data, keys, size=(20,7), keyword="", xtent=None):
72 for i in range(data.shape[-1]):
73 fig, ax = plt.subplots(figsize=size)
74 if xtent:
75 im = ax.imshow(data[:,:,i], vmin=-1, vmax=1, aspect='auto',

extent=[xtent[0]*25,xtent[1]*25,xtent[3]*.004+f3_offset ,
xtent[2]*.004+f3_offset])

76 else:
77 im = ax.imshow(data[:,:,i], vmin=-1, vmax=1, aspect='auto',

extent=[0,data.shape[1]*25,data.shape[0]*.004+f3_offset ,
f3_offset])

78 ax.set_title(keys[i].replace("_"," ").title())
79 ax.set_ylabel("Time [s]")
80 ax.set_xlabel("Offset [m]")
81 fig.colorbar(im, ax=ax)
82 fig.tight_layout()
83 # fig.show()
84 fig.savefig(f"figures/{keyword}_{keys[i]}.png", bbox_inches='tight

', dpi=200)
85

86 def plot_fk(data, keys, size=(5,5), keyword=""):
87 for i in range(data.shape[-1]):
88 M, N = data[:,:,i].shape
89 fft2 = fftpack.fft2(data[:,:,i])
90 f_mag = np.abs(fft2)
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91 f_mag = fftpack.fftshift(f_mag)
92 f_mag = np.log(1 + f_mag)
93 fig, ax = plt.subplots(figsize=size)
94 q, p = fftpack.fftfreq(M, d=.004), fftpack.fftfreq(N, d=25/1000)
95 im = ax.imshow(f_mag[:M//2,N//2:9*N//16], aspect='auto', vmin=0,

vmax=8,
96 extent=(0, max(p)/8, 0, max(q)))
97 ax.set_title(keys[i].replace("_"," ").title())
98 ax.set_ylabel("Frequency [Hz]")
99 ax.set_xlabel("Wavenumber [km$^{-1}$]")

100 fig.colorbar(im, ax=ax)
101 fig.tight_layout()
102 # fig.show()
103 fig.savefig(f"figures/{keyword}_fk_{keys[i]}.png", bbox_inches='

tight', dpi=200)
104

105 def plot_fk_diff(data, keys, size=(5,5), keyword=""):
106 for i in range(1,data.shape[-1]):
107 M, N = data[:,:,i].shape
108 fft2 = fftpack.fft2(data[:,:,i])
109 f_mag = np.abs(fft2) - np.abs(fftpack.fft2(data[:,:,0]))
110 f_mag = fftpack.fftshift(f_mag)
111 #f_mag = np.log(1 + f_mag)
112 vm = np.abs(f_mag).max()
113 q, p = fftpack.fftfreq(M, d=.004), fftpack.fftfreq(N, d=25/1000)
114 fig, ax = plt.subplots(figsize=size)
115 im = ax.imshow(f_mag[:M//2,:], aspect='auto', cmap='RdBu', vmin=-

vm, vmax=vm,
116 extent=(min(p), max(p), 0, max(q)))
117 ax.set_title(keys[i].replace("_"," ").title())
118 ax.set_ylabel("Frequency [Hz]")
119 ax.set_xlabel("Wavenumber [km$^{-1}$]")
120 fig.colorbar(im, ax=ax)
121 fig.tight_layout()
122 # fig.show()
123 fig.savefig(f"figures/{keyword}_fk_diff_{keys[i]}.png",

bbox_inches='tight', dpi=200)
124

125 print(seismic.shape[1], [x*seismic.shape[1]//y for x,y in [(1,2), (3,4),
(5,8), (9,16)]], [x*seismic.shape[1]//y-seismic.shape[1]//2 for x,y in
[(1,2), (3,4), (5,8), (9,16)]])

126

127 # Let's first calculate the rms and mae on the full seismic and the
cutouts.

128 format_seis(seismic, keys, "full")
129 format_seis(bottom, keys, "bottom")
130 format_seis(top, keys, "top")
131 format_seis(silent, keys, "silent")
132

133 # Plot seismic
134 plot_seis(seismic, keys, (20,7), "full")
135 plot_seis(bottom, keys ,(10,6), "bottom", bottom_xt)
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136 plot_seis(top,keys ,(10,6), "top", top_xt)
137 plot_seis(silent,keys ,(10,6), "silent", silent_xt)
138

139 # Plot FK representation of Seismic
140 plot_fk(seismic,keys,keyword="full")
141 plot_fk(top,keys,keyword="top")
142 plot_fk(bottom,keys,keyword="bottom")
143 plot_fk(silent,keys,keyword="silent")
144

145 # Plot difference of FK images
146 plot_fk_diff(seismic,keys,keyword="full")
147 plot_fk_diff(top,keys,keyword="top")
148 plot_fk_diff(bottom,keys,keyword="bottom")
149 plot_fk_diff(silent,keys,keyword="silent")

E.4 Machine Learning in 4D Seismic Inversion

E.4.1 4D Neural Network Inversion Training
This notebook generates a model for the notebook in [‘02 - 4D-Inversion-Field-Data‘](02
- 4D-Inversion-Field-Data).

1 import os
2

3 import matplotlib.pyplot as plt
4 %matplotlib inline
5

6 import pandas as pd
7 import numpy as np
8

9 from scipy.io import loadmat, savemat
10

11 from sklearn.model_selection import train_test_split
12 %load_ext autoreload
13 %autoreload 2

1 from numpy.random import seed
2 seed(42)
3 from tensorflow import set_random_seed
4 set_random_seed(42)
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E.4.1.1 Data Loading
The data was provided in Matlab data format. It is available as Pressure, Gas Satura-
tion and Water Saturation maps together and to increase training data, also available
as isolated effects. Additionally, pore volume maps turned out to be essential for a
successful inversion.

Each map contains values for ∆P , ∆Sg, ∆Sw maps and simulated seismic difference
maps for near, mid and far in the ‘dSNA_syn_‘ words.

1 def data_gen_train_full():
2 seed(42)
3 set_random_seed(42)
4 location = "data"
5 filename = "Seis2PS_NN_training_input"
6 suffixes = ["", "_Ponly", "_SGonly", "_SWonly"]
7 #suffixes = [""]
8 out = pd.DataFrame()
9 for suff in suffixes:

10 seis_ps = loadmat(os.path.join(location ,filename+suff))
11 headers = ["dP", "dSg", "dSw", "dSNA_syn_nr", "dSNA_syn_md", "

dSNA_syn_fr"]
12 print(suff)
13 for q in range(len(seis_ps["dSg"][0])):
14 tost = pd.DataFrame()
15 for x in headers:
16 tost[x] = seis_ps[x][0][q].ravel()
17 if suff == "":
18 pore = "Pore_volume"
19 pore_data = seis_ps[pore].ravel()
20 tost[pore] = pore_data
21 else:
22 tost[pore] = pore_data
23 out = out.append(tost)
24 out = out.dropna()
25 out = out.loc[~(out[["dP", "dSg", "dSw"]]==0).all(axis=1)]
26 out = out.sample(frac=1).reset_index(drop=True)
27

28 y_train = out[["dP", "dSg", "dSw"]]
29 X_train = out[["dSNA_syn_nr", "dSNA_syn_md", "dSNA_syn_fr", "

Pore_volume"]]
30

31 return X_train, y_train

1 def data_gen_test(q):
2 seed(42)
3 set_random_seed(42)
4 location = "data"
5 filename = "Seis2PS_NN_training_input"
6 seis_ps = loadmat(os.path.join(location ,filename))
7 headers = ["dP", "dSg", "dSw", "dSNA_syn_nr", "dSNA_syn_md", "

dSNA_syn_fr"]
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8 tost = pd.DataFrame()
9 for x in headers:

10 tost[x] = seis_ps[x][0][q].ravel()
11

12 pore = "Pore_volume"
13 pore_data = seis_ps[pore].ravel()
14 tost[pore] = pore_data
15

16 out = tost.dropna()
17 out = out.loc[~(out[["dP", "dSg", "dSw"]]==0).all(axis=1)]
18

19 y_train = out[["dP", "dSg", "dSw"]]
20 X_train = out[["dSNA_syn_nr", "dSNA_syn_md", "dSNA_syn_fr", "

Pore_volume"]]
21

22 return X_train, y_train

E.4.1.2 Model Building
The initial architecture was generated from an encoder decoder architecture using ‘hy-
peras‘ to optimize width, depth and dropout rate for predicting one synthetic map from
the other time steps.

1 import tensorflow as tf
2 import keras
3 import keras.backend as K
4 from keras.models import Model
5 from keras.layers import Input, Dense, AlphaDropout , Dropout, Lambda,

GaussianNoise , BatchNormalization , Concatenate
6 from keras import regularizers
7 from keras import optimizers
8 from keras import callbacks
9

10 from keras_tqdm import TQDMNotebookCallback
11

12 #from hyperopt import Trials, STATUS_OK , tpe
13 #from hyperas import optim
14 #from hyperas.distributions import choice, quniform , uniform, loguniform
15

16 from sklearn.metrics import r2_score
17 %autoreload 2

1 def r_square(y_true, y_pred):
2 from keras import backend as K
3 SS_res = K.sum(K.square(y_true - y_pred))
4 SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
5 return (1 - SS_res/(SS_tot + K.epsilon()))
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6

7 def r_square_loss(y_true, y_pred):
8 SS_res = K.sum(K.square(y_true - y_pred))
9 SS_tot = K.sum(K.square(y_true - K.mean(y_true)))

10 return 1 - ( 1 - SS_res/(SS_tot + K.epsilon()))
11

12 def huber_loss(y_true, y_pred, clip_delta=.35):
13 error = y_true - y_pred
14 cond = tf.keras.backend.abs(error) < clip_delta
15 squared_loss = 0.5 * tf.keras.backend.square(error)
16 linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 *

clip_delta)
17

18 return tf.where(cond, squared_loss , linear_loss)

1 def sampling(args):
2 """Reparameterization trick by sampling fr an isotropic unit Gaussian.
3 # Arguments
4 args (tensor): mean and log of variance of Q(z|X)
5 # Returns
6 z (tensor): sampled latent vector
7 """
8

9 z_mean, z_log_var = args
10 batch = K.shape(z_mean)[0]
11 dim = K.int_shape(z_mean)[1]
12 # by default, random_normal has mean=0 and std=1.0
13 epsilon = K.random_normal(shape=(batch, dim))
14 return z_mean + K.exp(0.5 * z_log_var) * epsilon
15

16 def build_vae(near_off mid_off, far_off, noise=0.01, lr=1e-4):
17 seed(42)
18 set_random_seed(42)
19

20 alpha_dropout = 0.20
21 encoding_dims = 256
22 growth_factor = 1
23

24 layers = 4
25

26

27 mid_near_offset = mid-near
28 far_near_offset = far-near
29 far_mid_offset = far-mid
30

31 near = Input(shape=(1,), name="near_input")
32 mid = Input(shape=(1,), name="mid_input")
33 far = Input(shape=(1,), name="far_input")
34 pore = Input(shape=(1,), name="pore_input")
35 noisy_near = GaussianNoise(noise)(near)
36 noisy_mid = GaussianNoise(noise)(mid)
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37 noisy_far = GaussianNoise(noise)(far)
38 mid_near = Lambda(lambda inputs: ( inputs[0] - inputs[1] ) / (

mid_near_offset ))([noisy_mid , noisy_near])
39 far_near = Lambda(lambda inputs: ( inputs[0] - inputs[1] ) / (

far_near_offset ))([noisy_far , noisy_near])
40 far_mid = Lambda(lambda inputs: ( inputs[0] - inputs[1] ) / (

far_mid_offset ) )([noisy_far , noisy_mid])
41

42 input_gradient = Concatenate()([noisy_near , noisy_mid , noisy_far ,
mid_near, far_near, far_mid, pore])

43

44 encoded = Dense(encoding_dims*growth_factor*layers, activation="relu",
name="encoder_0")(input_gradient)

45 encoded = Dropout(alpha_dropout)(encoded)
46 #encoded = BatchNormalization()(encoded)
47

48 for q in range(layers):
49 encoded = Dense(encoding_dims*growth_factor*(layers-q), activation

="relu", name="encoder_"+str(q+1))(encoded)
50 encoded = Dropout(alpha_dropout)(encoded)
51 #encoded = BatchNormalization()(encoded)
52

53 z_mean = Dense(encoding_dims , name='z_mean')(encoded)
54 z_log_var = Dense(encoding_dims , name='z_log_var')(encoded)
55

56 # use reparameterization trick to push the sampling out as input
57 # note that "output_shape" isn't necessary with the TensorFlow backend
58 deep_down = Lambda(sampling , name='z')([z_mean, z_log_var])
59

60 decoded0 = Dense(encoding_dims*growth_factor , activation="relu", name=
"decoder_0")(deep_down)

61

62 for q in range(2,layers):
63 #decoded0 = BatchNormalization()(decoded0)
64 decoded0 = Dropout(alpha_dropout)(decoded0)
65 decoded0 = Dense(encoding_dims*growth_factor*q, activation="relu",

name="decoder_"+str(q-1))(decoded0)
66

67 output0 = Dense(encoding_dims*growth_factor*layers, activation="linear
")(decoded0)

68 dP = Dense(1, activation="linear", name="dP")(output0)
69 output1 = Dense(encoding_dims*growth_factor*layers, activation="linear

")(decoded0)
70 dSw = Dense(1, activation="linear", name="dSw")(output1)
71 output2 = Dense(encoding_dims*growth_factor*layers, activation="linear

")(decoded0)
72 dSg = Dense(1, activation="linear", name="dSg")(output2)
73

74 model = Model(inputs=[near, mid, far, pore], output=[dP,dSw,dSg])
75

76 model.compile(loss="mse", optimizer=optimizers.Nadam(lr=lr), metrics=[
r_square])
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77

78 model.summary()
79

80 return model

1 X_train, y_train = data_gen_train_full()

1 model = build_vae(10,20,30,noise=0.00,lr=5e-4)

1 earlystop0 = callbacks.EarlyStopping(monitor='val_loss',min_delta=0,
patience=5,verbose=1,mode='auto', restore_best_weights=True)

2 earlystop1 = callbacks.EarlyStopping(monitor='val_loss',min_delta=0,
patience=11,verbose=1,mode='auto', restore_best_weights=True)

3 earlystop2 = callbacks.EarlyStopping(monitor='val_loss',min_delta=0,
patience=51,verbose=1,mode='auto', restore_best_weights=False)

4 ir1 = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience
=5, verbose = 1, min_lr=0)

5 ir2 = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience
=15, cooldown=10, verbose = 1, min_lr=0)

E.4.1.3 Pre-Training without Noise
Clearly the network should converge on the model data.

1 result = model.fit(
2 [X_train["dSNA_syn_nr"],X_train["dSNA_syn_md"],X_train["dSNA_syn_fr"],

X_train["Pore_volume"]],
3 [y_train["dP"],y_train["dSw"],y_train["dSg"]],
4 batch_size= 400,
5 epochs=2000,
6 verbose=0,
7 shuffle=True,
8 validation_split=0.01,
9 callbacks = [TQDMNotebookCallback(leave_inner=True,leave_outer=True),

earlystop1 ,ir1],
10 )

1 model.save("pre.hd5")
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E.4.1.4 Fine-Tuning On Noisy Data
The final model has to expect noisy data to be able to transfer it to field data, we
therefore rebuild the model and load the weights from the pre-trained network. This
model will not converge particularly nor will it perform well on the synthetic data.

1 model = build_vae(noise=0.02,lr=1e-4)
2 model.load_weights("pre.hd5")
3 model.compile(loss="mse", optimizer=optimizers.Nadam(lr=1e-4), metrics=[

r_square])
4 result = model.fit(
5 [X_train["dSNA_syn_nr"],X_train["dSNA_syn_md"],X_train["dSNA_syn_fr"],

X_train["Pore_volume"]],
6 [y_train["dP"],y_train["dSw"],y_train["dSg"]],
7 batch_size= 500,
8 epochs=2000,
9 verbose=0,

10 shuffle=True,
11 validation_split=0.01,
12 callbacks = [TQDMNotebookCallback(leave_inner=True,leave_outer=True),

earlystop2 ,ir2],
13 )
14 model.save("bbest.hd5")

1 experiment = "publication"

1 model = keras.models.load_model("best.hd5", custom_objects={'r_square':
r_square , 'huber_loss': huber_loss})

E.4.1.5 Test
Generate the test data and evaluate the model on this data. You may notice that the
”test” data is contained within the train data, which would be relevant, if the actual
evaluation was done on the synthetic data. During the build phase, this map would be
excluded from the train data to get valid results. (This is important.)

1 X_test, y_test = data_gen_test(3)

1 print("Evalutation on unseen data:")
2 print(model.evaluate([X_test["dSNA_syn_nr"],X_test["dSNA_syn_md"],X_test["

dSNA_syn_fr"],X_test["Pore_volume"]], [y_test["dP"],y_test["dSw"],
y_test["dSg"]]))
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1 %%timeit
2 preddata = model.predict([X_test["dSNA_syn_nr"],X_test["dSNA_syn_md"],

X_test["dSNA_syn_fr"],X_test["Pore_volume"]])

E.4.1.6 Plotting
The plotting rearranges the sample-wise prediction into the original map shape and
deletes predictions, where data is not available.

‘model_shape‘ saves a mask of the data, we apply this map to the predictions to get
rid of predictions on samples that did not contain actual data.

1 location = "data"
2 filename = "Seis2PS_NN_training_input"
3 q=3
4 pore_volume = loadmat(os.path.join(location ,filename))["Pore_volume"]
5 seis_ps = loadmat(os.path.join(location ,filename))
6 ravel_data = seis_ps["dSNA_syn_nr"][0][q].ravel()
7 model_shape = ~np.isnan(ravel_data)
8

9 plt.figure(figsize=(15,20))
10 plt.subplot(2, 2, 1)
11 vmax=np.max(np.abs(seis_ps["dSNA_syn_nr"][0][q]))
12 plt.imshow(seis_ps["dSNA_syn_nr"][0][q], cmap="seismic_r", vmin=-vmax,

vmax=vmax, aspect='auto')
13 plt.colorbar()
14 plt.title("Near")
15 plt.subplot(2, 2, 2)
16 vmax=np.max(np.abs(seis_ps["dSNA_syn_md"][0][q]))
17 plt.imshow(seis_ps["dSNA_syn_md"][0][q], cmap="seismic_r", vmin=-vmax,

vmax=vmax, aspect='auto')
18 plt.colorbar()
19 plt.title("Mid")
20 plt.subplot(2, 2, 3)
21 vmax=np.max(np.abs(seis_ps["dSNA_syn_fr"][0][q]))
22 plt.imshow(seis_ps["dSNA_syn_fr"][0][q], cmap="seismic_r", vmin=-vmax,

vmax=vmax, aspect='auto')
23 plt.colorbar()
24 plt.title("Far")
25 plt.subplot(2, 2, 4)
26 vmax=np.nanmax(seis_ps["Pore_volume"])
27 plt.imshow(seis_ps["Pore_volume"], cmap="seismic_r", vmin=-vmax, vmax=vmax

, aspect='auto')
28 plt.colorbar()
29 plt.title("Pore Volume")
30 plt.savefig("Seismic-input.png")
31 plt.show()
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1 data = np.full_like(seis_ps["dSg"][0][0], np.nan)
2 counter = 0
3 for i, m in enumerate(model_shape):
4 if m:
5 data[np.unravel_index(i, data.shape)] = preddata[0][counter]
6 counter += 1
7 vmax = np.nanmax([np.abs(data),np.abs(seis_ps["dP"][0][q])])
8 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20,10))
9

10 im = axes[0].imshow(data, cmap="seismic", vmin=-vmax, vmax=vmax, aspect='
equal')

11 axes[0].set_title("Neural Network dP "+experiment)
12

13 im = axes[1].imshow(seis_ps["dP"][0][q], cmap="seismic", vmin=-vmax, vmax=
vmax, aspect='equal')

14 axes[1].set_title("Test Data dP")
15

16 fig.tight_layout()
17 fig.subplots_adjust(right=0.8)
18 cbar_ax = fig.add_axes([0.82, 0.2, 0.01, 0.6])
19 fig.colorbar(im, cax=cbar_ax)
20

21 blerg = "dP"
22 mat_dict = {blerg+"_nn_data": data, blerg: seis_ps[blerg][0][q]}
23 savemat('matlab/'+blerg+'.mat', mat_dict)
24

25 fig.savefig("Bestfit-dP-"+experiment+".png")
26 fig.show()

1 plt.figure(figsize=(10,10))
2 plt.imshow(data-seis_ps["dP"][0][q], cmap="seismic", vmin=-vmax, vmax=vmax

)
3 plt.title("Misfit dP "+experiment)
4 plt.colorbar()
5 plt.tight_layout()
6 plt.savefig("Bestfit_diff -dP-"+experiment+".png")
7 plt.show()

1 data = np.full_like(seis_ps["dSg"][0][0], np.nan)
2 counter = 0
3 for i, m in enumerate(model_shape):
4 if m:
5 data[np.unravel_index(i, data.shape)] = preddata[1][counter]
6 counter += 1
7

8 vmax = np.nanmax([np.abs(data),np.abs(seis_ps["dSw"][0][q])])
9 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20,10))

10
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11 im = axes[0].imshow(data, cmap="seismic_r", vmin=-vmax, vmax=vmax, aspect=
'equal')

12 axes[0].set_title("Neural Network dSw "+experiment)
13

14 im = axes[1].imshow(seis_ps["dSw"][0][q], cmap="seismic_r", vmin=-vmax,
vmax=vmax, aspect='equal')

15 axes[1].set_title("Test Data dSw")
16

17 fig.tight_layout()
18 fig.subplots_adjust(right=0.8)
19 cbar_ax = fig.add_axes([0.82, 0.2, 0.01, 0.6])
20 fig.colorbar(im, cax=cbar_ax)
21

22 blerg = "dSw"
23 mat_dict = {blerg+"_nn_data": data, blerg: seis_ps[blerg][0][q]}
24 savemat('matlab/'+blerg+'.mat', mat_dict)
25

26 fig.savefig("Bestfit-dSw-"+experiment+".png")
27 fig.show()

1 plt.figure(figsize=(10,10))
2 plt.imshow(data-seis_ps["dSw"][0][q], cmap="seismic_r", vmin=-vmax, vmax=

vmax)
3 plt.title("Misfit dSw "+experiment)
4 plt.colorbar()
5 plt.tight_layout()
6 plt.savefig("Bestfit_diff -dSw-"+experiment+".png")
7 plt.show()

1 data = np.full_like(seis_ps["dSg"][0][0], np.nan)
2 counter = 0
3 for i, m in enumerate(model_shape):
4 if m:
5 data[np.unravel_index(i, data.shape)] = preddata[2][counter]
6 counter += 1
7

8 vmax = np.nanmax([np.abs(data),np.abs(seis_ps["dSg"][0][q])])
9 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20,10))

10

11 im = axes[0].imshow(data, cmap="seismic_r", vmin=-vmax, vmax=vmax, aspect
='equal')

12 axes[0].set_title("Neural Network dSg "+experiment)
13

14 im = axes[1].imshow(seis_ps["dSg"][0][q], cmap="seismic_r", vmin=-vmax,
vmax=vmax, aspect='equal')

15 axes[1].set_title("Test Data dSg")
16

17 fig.tight_layout()
18 fig.subplots_adjust(right=0.8)
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19 cbar_ax = fig.add_axes([0.85, 0.2, 0.01, 0.6])
20 fig.colorbar(im, cax=cbar_ax)
21

22 blerg = "dSg"
23 mat_dict = {blerg+"_nn_data": data, blerg: seis_ps[blerg][0][q]}
24 savemat('matlab/'+blerg+'.mat', mat_dict)
25

26 fig.savefig("Bestfit-dSg-"+experiment+".png")
27 fig.show()

1 plt.figure(figsize=(10,10))
2 plt.imshow(data-seis_ps["dSg"][0][q], cmap="seismic_r", vmin=-vmax, vmax=

vmax)
3 plt.title("Misfit dSg "+experiment)
4 plt.colorbar()
5 plt.tight_layout()
6 plt.savefig("Bestfit_diff -dSg-"+experiment+".png")
7 plt.show()

E.4.2 4D Inversion on Field Data
This notebook requires a trained model from the notebook in [‘01 - 4D-Pressure-Saturation-
Inversion‘](01 - 4D-Pressure-Saturation-Inversion.ipynb).

1 import os
2

3 import matplotlib.pyplot as plt
4 %matplotlib inline
5

6 import pandas as pd
7 import numpy as np
8

9 from scipy.io import loadmat, savemat
10

11 from sklearn.model_selection import train_test_split
12 %load_ext autoreload
13 %autoreload 2

1 from numpy.random import seed
2 seed(42)
3 from tensorflow import set_random_seed
4 set_random_seed(42)
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E.4.2.1 Data
This notebook evaluates the network on field data.

1 def data_gen(timestep):
2 seed(42)
3 set_random_seed(42)
4 #suffixes = [""]
5 location = "data"
6 filename = "Seis2PS_NN_training_input"
7 pore_volume = loadmat(os.path.join(location ,filename))["Pore_volume"]
8 location = "data"
9 filename = "Seis2PS_NN_training_input_obs"

10 seis_ps = loadmat(os.path.join(location ,filename))
11 pore_volume
12 headers = ["dSNA_nr", "dSNA_md", "dSNA_fr"]
13 out_test = pd.DataFrame()
14 tost = pd.DataFrame()
15 for x in headers:
16 ravel_data = seis_ps[x][0][timestep]
17 out_test[x] = ravel_data.ravel()
18

19 out_test["Pore_volume"] = pore_volume.ravel()
20

21

22

23 return out_test
24 data_gen(1).describe()

1 import tensorflow as tf
2 import keras
3 import keras.backend as K
4 from keras.models import Model
5 from keras.layers import Input, Dense, AlphaDropout , Dropout
6 from keras import regularizers
7 from keras import optimizers
8 from keras import callbacks
9

10 from keras_tqdm import TQDMNotebookCallback
11

12 from hyperopt import Trials, STATUS_OK , tpe
13 from hyperas import optim
14 from hyperas.distributions import choice, quniform , uniform, loguniform
15

16 from sklearn.metrics import r2_score
17 %autoreload 2

1 def r_square(y_true, y_pred):
2 from keras import backend as K
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3 SS_res = K.sum(K.square(y_true - y_pred))
4 SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
5 return (1 - SS_res/(SS_tot + K.epsilon()))
6

7 def r_square_loss(y_true, y_pred):
8 SS_res = K.sum(K.square(y_true - y_pred))
9 SS_tot = K.sum(K.square(y_true - K.mean(y_true)))

10 return 1 - ( 1 - SS_res/(SS_tot + K.epsilon()))
11

12 def huber_loss(y_true, y_pred, clip_delta=.35):
13 error = y_true - y_pred
14 cond = tf.keras.backend.abs(error) < clip_delta
15 squared_loss = 0.5 * tf.keras.backend.square(error)
16 linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 *

clip_delta)
17

18 return tf.where(cond, squared_loss , linear_loss)

1 experiment = "publication"

E.4.2.2 Model Loading
We load the noise-trained model. We have to provide the custom_objects ‘r_square‘,
‘huber_loss‘ for the experiments.

1 model = keras.models.load_model("best.hd5", custom_objects={'r_square':
r_square , 'huber_loss': huber_loss})

1 model.summary()

1 q = 3
2 X_test = data_gen(q)

1 preddata = model.predict(X_test)
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E.4.2.3 Plotting
Plot the resulting inversion and the networks.

1 for q in range(3,4):
2 X_test = data_gen(q)
3 preddata = model.predict([X_test["dSNA_nr"],X_test["dSNA_md"],X_test["

dSNA_fr"],X_test["Pore_volume"]])
4 fig = plt.figure(figsize=(15, 10))
5 plt.subplot(231)
6 vmax=np.max(np.abs(seis_ps["dSNA_nr"][0][q]))
7 plt.imshow(seis_ps["dSNA_nr"][0][q], cmap="seismic_r", vmin=-vmax,

vmax=vmax, aspect='equal')
8 plt.colorbar()
9 plt.title("Near")

10 plt.subplot(232)
11 vmax=np.max(np.abs(seis_ps["dSNA_md"][0][q]))
12 plt.imshow(seis_ps["dSNA_md"][0][q], cmap="seismic_r", vmin=-vmax,

vmax=vmax, aspect='equal')
13 plt.colorbar()
14 plt.title("Mid")
15 plt.subplot(233)
16 vmax=np.max(np.abs(seis_ps["dSNA_fr"][0][q]))
17 plt.imshow(seis_ps["dSNA_fr"][0][q], cmap="seismic_r", vmin=-vmax,

vmax=vmax, aspect='equal')
18 plt.colorbar()
19 plt.title("Far")
20

21 ax0 = plt.subplot(234)
22 data = preddata[0].reshape(seis_ps["dSNA_md"][0][0].shape)
23 vmax = np.nanmax(np.abs(data))
24 im0 = ax0.imshow(data, cmap="seismic", vmin=-vmax, vmax=vmax, aspect='

equal')
25 ax0.set_title("Neural Network dP "+experiment)
26 fig.colorbar(im0, ax=ax0)
27

28 ax1 = plt.subplot(235)
29 data = preddata[1].reshape(seis_ps["dSNA_md"][0][0].shape)
30 vmax = np.nanmax(np.abs(data))
31 im1 = ax1.imshow(data, cmap="seismic_r", vmin=-vmax, vmax=vmax, aspect

='equal')
32 ax1.set_title("Neural Network dSw")
33 fig.colorbar(im1, ax=ax1)
34

35

36 ax2 = plt.subplot(236)
37 data = preddata[2].reshape(seis_ps["dSNA_md"][0][0].shape)
38 vmax = np.nanmax(np.abs(data))
39 im2 = ax2.imshow(data, cmap="seismic", vmin=-vmax, vmax=vmax, aspect='

equal')
40 ax2.set_title("Neural Network dSg")
41 fig.colorbar(im2, ax=ax2)
42
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43 blerg = "obs"
44 mat_dict = {blerg+"dP_nn_data": preddata[0].reshape(seis_ps["dSNA_md"

][0][0].shape),
45 blerg+"dSw_nn_data": preddata[1].reshape(seis_ps["dSNA_md"

][0][0].shape),
46 blerg+"dSg_nn_data": preddata[2].reshape(seis_ps["dSNA_md"

][0][0].shape),
47 blerg+"near": seis_ps["dSNA_nr"][0][q],
48 blerg+"mid": seis_ps["dSNA_md"][0][q],
49 blerg+"far": seis_ps["dSNA_fr"][0][q],}
50 savemat('matlab/'+blerg+'.mat', mat_dict)
51

52 fig.savefig("Observed -vae-gradient -basemod2 -timestep"+str(q)+".png")
53 fig.show()

1 from keras.utils import plot_model
2 plot_model(model, to_file='model.png', show_shapes=True)

1 from IPython.display import SVG
2 from keras.utils.vis_utils import model_to_dot
3

4 SVG(model_to_dot(model).create(prog='dot', format='svg'))

1 X_test.shape

1 preddata[0].shape

1 location = "data"
2 filename = "Seis2PS_NN_training_input"
3 pore_volume = loadmat(os.path.join(location ,filename))["Pore_volume"]

1 location = "data"
2 filename = "Seis2PS_NN_training_input_obs"
3 seis_ps = loadmat(os.path.join(location ,filename))
4 headers = list(seis_ps.keys())[3:]
5 plt.imshow(pore_volume)
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1 seis_ps["dSNA_nr"][0][0].shape

1 plt.figure(figsize=(15,20))
2 plt.subplot(2, 2, 1)
3 vmax=np.max(np.abs(seis_ps["dSNA_nr"][0][q]))
4 plt.imshow(seis_ps["dSNA_nr"][0][q], cmap="seismic_r", vmin=-vmax, vmax=

vmax, aspect='auto')
5 plt.colorbar()
6 plt.title("Near")
7 plt.subplot(2, 2, 2)
8 vmax=np.max(np.abs(seis_ps["dSNA_md"][0][q]))
9 plt.imshow(seis_ps["dSNA_md"][0][q], cmap="seismic_r", vmin=-vmax, vmax=

vmax, aspect='auto')
10 plt.colorbar()
11 plt.title("Mid")
12 plt.subplot(2, 2, 3)
13 vmax=np.max(np.abs(seis_ps["dSNA_fr"][0][q]))
14 plt.imshow(seis_ps["dSNA_fr"][0][q], cmap="seismic_r", vmin=-vmax, vmax=

vmax, aspect='auto')
15 plt.colorbar()
16 plt.title("Far")
17 plt.subplot(2, 2, 4)
18 vmax=np.nanmax(seis_ps["Pore_volume"])
19 plt.imshow(seis_ps["Pore_volume"], cmap="seismic_r", vmin=-vmax, vmax=vmax

, aspect='auto')
20 plt.colorbar()
21 plt.title("Pore Volume")
22 plt.savefig("Seismic-input.png")
23 plt.show()

1 import click
2 import glob
3 from tqdm import tqdm
4 import segyio
5 import numpy as np
6 from numpy.lib import stride_tricks
7 from time import time
8

9 def cutup(data, blck, strd):
10 sh = np.array(data.shape)
11 blck = np.asanyarray(blck)
12 strd = np.asanyarray(strd)
13 nbl = (sh - blck) // strd + 1
14 strides = np.r_[data.strides * strd, data.strides]
15 dims = np.r_[nbl, blck]
16 data6 = stride_tricks.as_strided(data, strides=strides, shape=dims)
17 return data6#.reshape(-1, *blck)
18
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19 for filename in glob.iglob("../data/*.sgy"):
20 start_time = time()
21 numpy_path = filename[:-4]+"_256.npy"
22 cube_path = filename[:-4]+"_cube.npy"
23 print(f"=== Converting {filename[:-4].split('/')[-1]} ===")
24 print("Opening file")
25 with segyio.open(filename , 'r', strict=False) as segy:
26 print("Precomputing Statistics")
27 f_time = time()
28 ilines=np.unique(segy.attributes(segyio.TraceField.INLINE_3D)[:])
29 mi = min(ilines)
30 mia = max(ilines)
31 il = len(np.unique(ilines))
32 xlines=np.unique(segy.attributes(segyio.TraceField.CROSSLINE_3D)

[:])
33 mx = min(xlines)
34 mxa = max(xlines)
35 xl = len(np.unique(xlines))
36 out = np.full((il-600, xl-600, len(segy.samples)),np.nan,dtype=np.

float32)
37 print(f" - in {time() - f_time:.2f} seconds")
38 print("Extracting Traces")
39 f_time = time()
40 for x in tqdm(range(len(segy.trace))):
41 i = segy.attributes(segyio.TraceField.INLINE_3D)[x]-mi
42 c = segy.attributes(segyio.TraceField.CROSSLINE_3D)[x]-mx
43 if (i >= 300) and (i < il - 300) and (c >= 300) and (c < xl -

300):
44 out[i-300, c-300, :] = segy.trace[x]
45 print(f" - in {time() - f_time:.2f} seconds")
46

47 print("Normalization")
48 f_time = time()
49 out_clip = np.percentile(np.abs(out), 99)
50 out = np.clip(out, -out_clip , out_clip)
51 out /= max(abs(out.min()), out.max())
52 print(f" - in {time() - f_time:.2f} seconds")
53

54 print("Reshaping Data to Batches")
55 f_time = time()
56 i, j, k = (64, 64, 256-64) # Batch Dimension
57 s_i, s_j, s_k = (2, 2, 1.2) # Strides
58 y = cutup(out, (i, j, k), (int(i/s_i), int(j/s_j), int(k/s_k))).

reshape(-1 , i, j, k, 1)
59 print(f" - in {time() - f_time:.2f} seconds")
60

61 print("Saving File")
62 f_time = time()
63 np.save(numpy_path , y)
64 np.save(cube_path , out)
65 print(f" - in {time() - f_time:.2f} seconds")
66
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67 print("Testing Load")
68 f_time = time()
69 z = np.load(numpy_path)
70 np.testing.assert_array_equal(y,z)
71 del y
72 del z
73 z = np.load(cube_path)
74 np.testing.assert_array_equal(out,z)
75 del z
76 print(f" - in {time() - f_time:.2f} seconds")
77 print("--- --- ---")
78 print(f"Total: {time() - start_time:.2f} seconds")
79 print("=== === ===", end="\n\n")
80

81 print("Conversion Completed.")

1 """
2 train atlas-based alignment with MICCAI2018 version of VoxelMorph ,
3 specifically adding uncertainty estimation and diffeomorphic transforms.
4 """
5

6 # python imports
7 import os
8 import glob
9 import sys

10 import random
11 from argparse import ArgumentParser
12

13 # third-party imports
14 import tensorflow as tf
15 import numpy as np
16 from keras.backend.tensorflow_backend import set_session
17 from keras.optimizers import Adam
18 from keras.callbacks import ModelCheckpoint , CSVLogger , TerminateOnNaN ,

ReduceLROnPlateau , EarlyStopping
19

20 # project imports
21 import datagenerators
22 import networks
23 import losses
24

25 vm_dir = '/home/jdram/voxelmorph/'
26 sys.path.append(os.path.join(vm_dir, 'ext', 'neuron'))
27 import neuron.callbacks as nrn_gen
28

29 # export PYTHONPATH=$PYTHONPATH:/home/jdram/voxelmorph/ext/neuron/:/home/
jdram/voxelmorph/ext/pynd-lib/:/home/jdram/voxelmorph/ext/pytools-lib/

30

31 def train(data_dir ,
32 atlas_file ,
33 model_dir ,
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34 gpu_id,
35 lr,
36 nb_epochs ,
37 prior_lambda ,
38 image_sigma ,
39 steps_per_epoch ,
40 batch_size ,
41 load_model_file ,
42 bidir,
43 bool_cc,
44 initial_epoch=0):
45 """
46 model training function
47 :param data_dir: folder with npz files for each subject.
48 :param atlas_file: atlas filename. So far we support npz file with a '

vol' variable
49 :param model_dir: model folder to save to
50 :param gpu_id: integer specifying the gpu to use
51 :param lr: learning rate
52 :param nb_epochs: number of training iterations
53 :param prior_lambda: the prior_lambda , the scalar in front of the

smoothing laplacian , in MICCAI paper
54 :param image_sigma: the image sigma in MICCAI paper
55 :param steps_per_epoch: frequency with which to save models
56 :param batch_size: Optional , default of 1. can be larger, depends on

GPU memory and volume size
57 :param load_model_file: optional h5 model file to initialize with
58 :param bidir: logical whether to use bidirectional cost function
59 :param bool_cc: Train CC or MICCAI version
60 """
61

62 # load atlas from provided files. The atlas we used is 160x192x224.
63 #atlas_vol = np.load(atlas_file)['vol'][np.newaxis, ..., np.newaxis]
64 vm_dir = '/home/jdram/voxelmorph/'
65 base = np.load(os.path.join(vm_dir, "data","

ts12_dan_a88_fin_o_trim_adpc_002661_256.npy"))
66 monitor = np.load(os.path.join(vm_dir, "data","

ts12_dan_a05_fin_o_trim_adpc_002682_256.npy"))
67 #base = np.load(os.path.join(vm_dir, "data","

ts12_dan_a88_fin_o_trim_adpc_002661_abs.npy"))
68 #monitor = np.load(os.path.join(vm_dir, "data","

ts12_dan_a05_fin_o_trim_adpc_002682_abs.npy"))
69

70 #vol_size = (64, 64, 64)
71 vol_size = (64, 64, 256-64)
72 #vol_size = (128, 128, 256)
73

74 # prepare data files
75 # for the CVPR and MICCAI papers, we have data arranged in train/

validate/test folders
76 # inside each folder is a /vols/ and a /asegs/ folder with the volumes
77 # and segmentations. All of our papers use npz formated data.
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78 #train_vol_names = glob.glob(os.path.join(data_dir , '*.npy'))
79 #random.shuffle(train_vol_names) # shuffle volume list
80 #assert len(train_vol_names) > 0, "Could not find any training data"
81

82 # Diffeomorphic network architecture used in MICCAI 2018 paper
83 nf_enc = [32,64,64,64]
84 nf_dec = [64,64,64,64,32,3]
85

86 # prepare model folder
87 if not os.path.isdir(model_dir):
88 os.mkdir(model_dir)
89 tf.reset_default_graph()
90

91 if bool_cc:
92 pre_net = "cc_"
93 else:
94 if bidir:
95 pre_net = "miccai_bidir_"
96 else:
97 pre_net = "miccai_"
98

99

100 # gpu handling
101 gpu = '/device:GPU:%d' % int(gpu_id) # gpu_id
102 os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
103 config = tf.ConfigProto()
104 config.gpu_options.allow_growth = True
105 config.allow_soft_placement = True
106 set_session(tf.Session(config=config))
107

108 # prepare the model
109 with tf.device(gpu):
110 # prepare the model
111 # in the CVPR layout, the model takes in [image_1, image_2] and

outputs [warped_image_1 , flow]
112 # in the experiments , we use image_2 as atlas
113 if bool_cc:
114 model = networks.cvpr2018_net(vol_size , nf_enc, nf_dec)
115 else:
116 model = networks.miccai2018_net(vol_size , nf_enc, nf_dec,

bidir=bidir, vel_resize=.5)
117

118

119 # load initial weights
120 if load_model_file is not None and load_model_file != "":
121 print('loading', load_model_file)
122 model.load_weights(load_model_file)
123

124 # save first iteration
125 model.save(os.path.join(model_dir , f'{pre_net}{initial_epoch:02d}.

h5'))
126 model.summary()
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127

128 if bool_cc:
129 model_losses = [losses.NCC().loss, losses.Grad('l2').loss]
130 loss_weights = [1.0, 0.01] # recommend 1.0 for ncc, 0.01 for

mse
131 else:
132 flow_vol_shape = model.outputs[-1].shape[1:-1]
133 loss_class = losses.Miccai2018(image_sigma , prior_lambda ,

flow_vol_shape=flow_vol_shape)
134 if bidir:
135 model_losses = [loss_class.recon_loss , loss_class.

recon_loss , loss_class.kl_loss]
136 loss_weights = [0.5, 0.5, 1]
137 else:
138 model_losses = [loss_class.recon_loss , loss_class.kl_loss]
139 loss_weights = [1, 1]
140

141 segy_gen = datagenerators.segy_gen(base, monitor, batch_size=
batch_size)

142

143 # prepare callbacks
144 save_file_name = os.path.join(model_dir , pre_net+'{epoch:02d}.h5')
145

146 with tf.device(gpu):
147 # fit generator
148 save_callback = ModelCheckpoint(save_file_name , period=5)
149 csv_cb = CSVLogger(f'{pre_net}log.csv')
150 nan_cb = TerminateOnNaN()
151 rlr_cb = ReduceLROnPlateau(monitor='loss', verbose=1)
152 els_cb = EarlyStopping(monitor='loss', patience=15, verbose=1,

restore_best_weights=True)
153 cbs = [save_callback , csv_cb, nan_cb, rlr_cb, els_cb]
154 mg_model = model
155

156 # compile
157 mg_model.compile(optimizer=Adam(lr=lr), loss=model_losses ,

loss_weights=loss_weights)
158

159

160

161 mg_model.fit([base, monitor],[monitor, np.zeros_like(base)],
162 initial_epoch=initial_epoch ,
163 batch_size=8,
164 epochs=nb_epochs ,
165 callbacks=cbs,
166 #steps_per_epoch=steps_per_epoch ,
167 verbose=1)
168

169

170 if __name__ == "__main__":
171 parser = ArgumentParser()
172
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173 parser.add_argument("--data_dir", type=str, default='/home/jdram/
voxelmorph/data',

174 help="data folder")
175

176 parser.add_argument("--atlas_file", type=str,
177 dest="atlas_file", default='/home/jdram/voxelmorph

/data/atlas_norm.npz',
178 help="atlas file")
179 parser.add_argument("--model_dir", type=str,
180 dest="model_dir", default='/home/jdram/voxelmorph/

models/',
181 help="models folder")
182 parser.add_argument("--gpu", type=str, default="6",
183 dest="gpu_id", help="gpu id number")
184 parser.add_argument("--lr", type=float,
185 dest="lr", default=1e-4, help="learning rate")
186 parser.add_argument("--epochs", type=int,
187 dest="nb_epochs", default=350,
188 help="number of iterations")
189 parser.add_argument("--prior_lambda", type=float,
190 dest="prior_lambda", default=10,
191 help="prior_lambda regularization parameter")
192 parser.add_argument("--image_sigma", type=float,
193 dest="image_sigma", default=0.02,
194 help="image noise parameter")
195 parser.add_argument("--steps_per_epoch", type=int,
196 dest="steps_per_epoch", default=100,
197 help="frequency of model saves")
198 parser.add_argument("--batch_size", type=int,
199 dest="batch_size", default=1,
200 help="batch_size")
201 parser.add_argument("--load_model_file", type=str,
202 dest="load_model_file",
203 help="optional h5 model file to initialize with")
204 parser.add_argument("--bidir", type=int,
205 dest="bidir", default=0,
206 help="whether to use bidirectional cost function")
207 parser.add_argument("--initial_epoch", type=int,
208 dest="initial_epoch", default=0,
209 help="first epoch")
210 parser.add_argument("--cc", type=bool,
211 dest="bool_cc", default=False,
212 help="Train MICCAI diffeomorphism version or CC.")
213

214 args = parser.parse_args()
215 train(**vars(args))

1 """
2 Example script to register two volumes with VoxelMorph models
3 Please make sure to use trained models appropriately.
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4 Let's say we have a model trained to register subject (moving) to atlas (
fixed)

5 One could run:
6 python register.py --gpu 0 /path/to/test_vol.nii.gz /path/to/atlas_norm.

nii.gz --out_img /path/to/out.nii.gz --model_file ../models/
cvpr2018_vm2_cc.h5

7 """
8

9 #%%
10 # py imports
11 import os
12 import sys
13 from argparse import ArgumentParser
14

15 # third party
16 import tensorflow as tf
17 import numpy as np
18 import keras
19 from keras.backend.tensorflow_backend import set_session
20 from scipy.interpolate import interpn
21

22 import matplotlib.pyplot as plt
23

24 #%%
25 # project
26 sys.path.append('/home/jdram/voxelmorph/src')
27 import networks, losses
28 sys.path.append('/home/jdram/voxelmorph/ext/neuron')
29 import neuron.layers as nrn_layers
30

31 #%%
32

33 def register(gpu_id, mov, fix, model_file , out_img, out_warp):
34 """
35 register moving and fixed.
36 """
37 #assert model_file , "A model file is necessary"
38 #assert out_img or out_warp , "output image or warp file needs to be

specified"
39

40 # GPU handling
41 if gpu_id is not None:
42 gpu = '/gpu:' + str(gpu_id)
43 os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
44 config = tf.ConfigProto()
45 config.gpu_options.allow_growth = True
46 config.allow_soft_placement = True
47 set_session(tf.Session(config=config))
48 else:
49 gpu = '/cpu:0'
50

51 # load data
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52 #mov_nii = nib.load(moving)
53 #mov = mov_nii.get_data()[np.newaxis, ..., np.newaxis]
54 #fix_nii = nib.load(fixed)
55 #fix = fix_nii.get_data()[np.newaxis, ..., np.newaxis]
56

57 with tf.device(gpu):
58 # load model
59 loss_class = losses.Miccai2018(0.02, 10, flow_vol_shape=[256-64])
60 custom_objects = {'SpatialTransformer': nrn_layers.

SpatialTransformer ,
61 'VecInt': nrn_layers.VecInt,
62 'Sample': networks.Sample,
63 'Rescale': networks.RescaleDouble ,
64 'Resize': networks.ResizeDouble ,
65 'Negate': networks.Negate,
66 'recon_loss': loss_class.recon_loss , # values shouldn't

matter
67 'kl_loss': loss_class.kl_loss # values shouldn't

matter
68 }
69

70

71 net = keras.models.load_model(model_file , custom_objects=
custom_objects)

72

73 # register
74 [moved, warp] = net.predict([mov, fix])
75

76 return moved, warp
77

78 def plt_commons(title, ix, cbar_label=None, pre='x', name='x', w=0, suff='
'):

79 plt.title(title.title())
80 plt.ylabel('Time [s]')
81 plt.xlabel(f'{ix} [m]')
82 if cbar_label:
83 cbar = plt.colorbar(pad=0.1, orientation="horizontal", aspect=20)
84 cbar.set_label(cbar_label)
85 plt.savefig(f'{pre}_{ix}_{title}_{w}{suff}.png'.replace(' ','_').lower

(), bbox_inches='tight')
86

87 def warp_results(moving, fixed, moved, warped, pre='x'):
88 """
89 Warp Results and plot on CPU
90 moving: monitor
91 fixed: base
92 moved: matched monitor
93 warped: warp vector
94 pre: extra suffix for multiple experiments
95 """
96 seis = np.max([np.abs(moving[0, 32, :, :, 0]).max(), \
97 np.abs(fixed[0, 32, :, :, 0]).max(), \
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98 np.abs(moved[0, 32, :, :, 0]).max(), \
99 np.abs(moving[0, :, 32, :, 0]).max(), \

100 np.abs(fixed[0, :, 32, :, 0]).max(), \
101 np.abs(moved[0, :, 32, :, 0]).max(), \
102 ])
103

104 orig_warp = warped.copy()
105 orig_warp[:,:,:,:,3:] = np.exp(orig_warp[:,:,:,:,3:]/2)
106

107 warped[:,:,:,:,3:] = np.exp(warped[:,:,:,:,3:]/2)
108 warped[:,:,:,:,0:2] *= 12.5
109 warped[:,:,:,:,3:5] *= 12.5
110 warped[:,:,:,:,2] *= 0.004 * 1e3
111 warped[:,:,:,:,5] *= 0.004 * 1e3
112 warp_u = np.max([np.abs(warped[0, 32, :, :, :2]), \
113 np.abs(warped[0, :, 32, :, :2])])
114

115 warp_ut = np.max([np.abs(warped[0, 32, :, :, 2]), \
116 np.abs(warped[0, :, 32, :, 2])])
117

118 diff = np.max([np.abs(moving[0, 32, :, :, 0]-fixed[0, 32, :, :, 0]).
max(), \

119 np.abs(moved[0, 32, :, :, 0]-fixed[0, 32, :, :, 0]).max(), \
120 ])
121

122 for name, dat in {'monitor': moving, 'base': fixed, 'matched': moved,
'warp': warped}.items():

123 extent = (0,64*12.5, (256-64)*.004, 0)
124 plt_size= (3,9)
125

126 plt_args = {'extent':extent, 'aspect':'auto', 'interpolation':'
bicubic'}

127

128 for w in range(dat.shape[-1]):
129

130 if w < 3:
131 cmap = 'RdBu'
132

133 if dat.shape[-1] == 1:
134 va = diff
135 cb = 'Amplitude'
136

137 # Difference Images
138 if not 'base' in name:
139 plt.figure(figsize=plt_size)
140 plt.imshow(dat[0, 32, :, :, w].T-fixed[0, 32, :,

:, w].T, cmap=cmap, vmin=-va, vmax=va, **
plt_args)

141 plt_commons(name+' difference', 'inline', cb, pre=
pre, name=name, w=w, suff='_diff')

142

143 plt.figure(figsize=plt_size)
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144 plt.imshow(dat[0, :, 32, :, w].T-fixed[0, :, 32,
:, w].T, cmap=cmap, vmin=-va, vmax=va, **
plt_args)

145 plt_commons(name+' difference', 'crossline', cb,
pre=pre, name=name, w=w, suff='_diff')

146 va = seis
147

148 else:
149 va = warp_u
150 cb = 'Spatial Shift [m]'
151 if w == 2:
152 va = warp_ut
153 cb = 'Time Shift [ms]'
154

155 # Intentionally left unindented
156 plt.figure(figsize=plt_size)
157 plt.imshow(dat[0, 32, :, :, w].T, cmap=cmap, vmin=-va,

vmax=va, **plt_args)
158 plt_commons(name, 'inline', cb, pre=pre, name=name, w=w)
159

160 plt.figure(figsize=plt_size)
161 plt.imshow(dat[0, :, 32, :, w].T, cmap=cmap, vmin=-va,

vmax=va, **plt_args)
162 plt_commons(name, 'crossline', cb, pre=pre, name=name, w=w

)
163

164 else:
165 cmap = 'viridis'
166 cb = 'Spatial Uncertainty $1\sigma$ [m]'
167 va = warp_u
168 if w == 5:
169 cb = 'Temporal Uncertainty $1\sigma$ [ms]'
170 va = warp_ut
171

172 plt.figure(figsize=plt_size)
173 plt.imshow(dat[0, 32, :, :, w].T,cmap=cmap, **plt_args)
174 plt_commons(name, 'inline', cb, pre=pre, name=name, w=w)
175

176 plt.figure(figsize=plt_size)
177 plt.imshow(dat[0, :, 32, :, w].T,cmap=cmap, **plt_args)
178 plt_commons(name, 'crossline', cb, pre=pre, name=name, w=w

)
179

180 if w == 0:
181 np.save(f'{name}_{pre}.npy', dat)
182 plt.close('all')
183

184 #%%
185 vm_dir = '/home/jdram/voxelmorph/'
186 model_path = "/home/jdram/voxelmorph/models/backup/miccai_300_full_deep.h5

" #64x64x192 full unet
187 #model_path = "/home/jdram/voxelmorph/models/backup/miccai_e290_64 -64-192
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_upsample.h5" #64x64x192 upsampled
188

189 monitor_hfd = np.load(os.path.join("/", "scratch", "jdram", "voxelmorph",
"halfdan", "ts12_hfd_h05_fin_o_trim_adpc_002582_cube.npy"))

190 base_hfd = np.load(os.path.join("/", "scratch", "jdram", "voxelmorph",
"halfdan", "ts12_hfd_h93_fin_o_trim_adpc_002568_cube.npy"))

191

192 #k = 350
193 #p = 850
194 #q = 475
195 k = 350
196 p = 200
197 q = 475
198 moving = monitor_hfd[np.newaxis, k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
199 fixed = base_hfd[np.newaxis,k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
200

201 #%%
202 moved, warped = register(None, moving, fixed, model_path , None, None)
203

204 #%%
205 warp_results(moving,fixed,moved,warped,'hfd')
206

207 #%%
208

209 monitor = np.load(os.path.join(vm_dir, "data","
ts12_dan_a05_fin_o_trim_adpc_002682_cube.npy"))

210 base = np.load(os.path.join(vm_dir, "data","
ts12_dan_a88_fin_o_trim_adpc_002661_cube.npy"))

211

212 k=225
213 q=350
214 p=300
215

216 moving = monitor[np.newaxis, k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
217 fixed = base[np.newaxis,k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
218

219 #%%
220 moved, warped = register(None, moving, fixed, model_path , None, None)
221

222 #%%
223

224 #np.save("moving_a.npy",moving)
225 #np.save("fixed_a.npy",fixed)
226 #np.save("moved_a.npy",moved)
227 #np.save("warped_a.npy",warped)
228

229 warp_results(moving,fixed,moved,warped,'a')
230

231

232

233 base2 = np.load(os.path.join(vm_dir, "data","
ts12_dan_d05_fin_o_trim_adpc_002696_cube.npy"))
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234 monitor2 = np.load(os.path.join(vm_dir, "data","
ts12_dan_d12_fin_o_trim_adpc_002710_cube.npy"))

235

236 moving = monitor2[np.newaxis, k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
237 fixed = base2[np.newaxis,k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
238

239 #%%
240 moved, warped = register(None, moving, fixed, model_path , None, None)
241

242 #%%
243 warp_results(moving,fixed,moved,warped,'d')
244

245

246 moving = monitor2[np.newaxis, k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
247 fixed = monitor[np.newaxis,k-32:k+32,p:p+64,q:q+256-64,np.newaxis]
248

249 #%%
250 moved, warped = register(None, moving, fixed, model_path , None, None)
251

252 #%%
253 warp_results(moving,fixed,moved,warped,'ad')

E.5 Software Manual: Keras Complex
Software manual from the keras complex package for complex-valued neural networks
in Python 3. Original code by Trabelsi et al. (2017) in Theano. Code ported to Ten-
sorflow, consolidated, packaged, set up with automatic testing and documentation by
Dramsch et al. (2019c).

Original Code:

C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. Santos, S.
Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal (2017). “Deep complex networks”.
In: arXiv preprint arXiv:1705.09792

Port to Keras with Tensorflow:

J. S. Dramsch and Contributors (2019c). Complex-Valued Neural Networks in Keras
with Tensorflow. Open-Source Software. doi: 10.6084/m9.figshare.9783773. url:
https://github.com/JesperDramsch/keras-complex

https://doi.org/10.6084/m9.figshare.9783773
https://github.com/JesperDramsch/keras-complex
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True,

beta_initializer=
’zeros’,

gam
m

a_diag_initializer=
’sqrt_init’,

gam
m

a_off_initializer=
’zeros’,

m
ov-

ing_m
ean_initializer=

’zeros’,
m

ov-
ing_variance_initializer=

’sqrt_init’,
m

oving_covariance_initializer=
’zeros’,

beta_regularizer=
N

one,
gam

m
a_diag_regularizer=

N
one,

gam
m

a_off_regularizer=
N

one,
beta_constraint=

N
one,

gam
m

a_diag_constraint=
N

one,
gam

m
a_off_constraint=

N
one,**kw

args)
B

ases:
k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

C
om

plex
version

of
the

realdom
ain

B
atch

norm
alization

layer
(Ioffe

and
Szegedy,2014).

N
orm

alize
the

acti-
vations

of
the

previous
com

plex
layer

ateach
batch,i.e.

applies
a

transform
ation

thatm
aintains

the
m

ean
of

a
com

plex
unitclose

to
the

nullvector,the
2

by
2

covariance
m

atrix
ofa

com
plex

unitclose
to

identity
and

the
2

by
2

relation
m

atrix,also
called

pseudo-covariance,close
to

the
nullm

atrix.#
A

rgum
ents

axis:Integer,the
axisthatshould

be
norm

alized
(typically

the
featuresaxis).Forinstance,aftera

C
onv2D

layerw
ith

data_form
at=

”channels_first”,setaxis=
2

in
C

om
plexB

atchN
orm

alization.

m
om

entum
:M

om
entum

for
the

m
oving

statisticsrelated
to

the
realand

im
aginary

parts.

epsilon:Sm
allfloatadded

to
each

ofthe
variancesrelated

to
the

realand
im

aginary
parts

in
or-

derto
avoid

dividing
by

zero.

center:IfTrue,add
offsetofbeta

to
com

plex
norm

alized
tensor.

If
False,beta

is
ignored.

(beta
is

form
ed

by
real_beta

and
im

ag_beta)

scale:IfTrue,m
ultiply

by
the

gam
m

a
m

atrix.
IfFalse,gam

m
a

is
notused.

beta_initializer:
Initializerforthe

real_beta
and

the
im

ag_beta
w

eight.gam
m

a_diag_initializer:
Ini-

tializerforthe
diagonalelem

ents
ofthe

gam
m

a
m

atrix.

w
hich

are
the

variances
ofthe

realpartand
the

im
aginary

part.

4
C

hapter
1.

C
ontents



K
eras

C
om

plex

gam
m

a_off_initializer:
Initializer

for
the

off-diagonal
elem

ents
of

the
gam

m
a

m
atrix.

m
ov-

ing_m
ean_initializer:

Initializer
for

the
m

oving
m

eans.
m

oving_variance_initializer:
Initializer

for
the

m
oving

variances.m
oving_covariance_initializer:Initializerforthe

m
oving

covariance
of

the
realand

im
aginary

parts.

beta_regularizer:O
ptionalregularizerforthe

beta
w

eights.gam
m

a_regularizer:O
ptionalregularizer

forthe
gam

m
a

w
eights.beta_constraint:O

ptionalconstraintforthe
beta

w
eights.gam

m
a_constraint:

O
ptionalconstraintforthe

gam
m

a
w

eights.

#
Inputshape

A
rbitrary.

U
se

the
keyw

ord
argum

entinput_shape
(tuple

ofintegers,does
notinclude

the
sam

-
ples

axis)w
hen

using
this

layeras
the

firstlayerin
a

m
odel.

#
O

utputshape
Sam

e
shape

as
input.

#
R

eferences

•
[B

atch
N

orm
alization:

A
ccelerating

D
eep

N
etw

ork
Training

by
R

educing
Internal

C
ovariate

Shift](https://arxiv.org/abs/1502.03167)

b
u
i
l
d
(

input_shape)
C

reates
the

layerw
eights.

M
ustbe

im
plem

ented
on

alllayers
thathave

w
eights.

#
A

rgum
ents

input_shape:K
erastensor

(future
inputto

layer)
or

list/tuple
of

K
eras

tensors
to

reference
for

w
eightshape

com
putations.

c
a
l
l
(

inputs,training=
N

one)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

c
o
m
p
l
e
x
n
n
.
b
n
.
c
o
m
p
l
e
x
_
s
t
a
n
d
a
r
d
i
z
a
t
i
o
n
(

input_centred,V
rr,Vii,V

ri,layernorm
=

False,axis=
-1)

C
om

plex
Standardization

ofinput

A
rgum

ents:
input_centred

–
InputTensorV

rr–
R

ealcom
ponentofcovariance

m
atrix

V
V

ii–
Im

aginary
com

-
ponentofcovariance

m
atrix

V
V

ri–
N

on-diagonalcom
ponentofcovariance

m
atrix

V

K
eyw

ord
A

rgum
ents:

layernorm
{bool}

–
N

orm
alization

(default:{False})axis
{int}

–
A

xis
forStandardiza-

tion
(default:{-1})

R
aises:

V
alueE

rror:M
ism

atched
dim

ensoins

R
eturns:

C
om

plex
standardized

input

c
o
m
p
l
e
x
n
n
.
b
n
.
s
a
n
i
t
i
z
e
d
I
n
i
t
G
e
t
(

init)

c
o
m
p
l
e
x
n
n
.
b
n
.
s
a
n
i
t
i
z
e
d
I
n
i
t
S
e
r
(

init)

1.3.
com

plexnn
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C
om

plex

c
o
m
p
l
e
x
n
n
.
b
n
.
s
q
r
t
_
i
n
i
t
(

shape,dtype=
N

one)

com
plexnn.conv

m
odule

conv.py

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
(

rank,
filters,

kernel_size,
strides=

1,
padding=

’valid’,
data_form

at=
N

one,
dilation_rate=

1,
activation=

N
one,

use_bias=
True,

norm
alize_w

eight=
False,

ker-
nel_initializer=

’com
plex’,

bias_initializer=
’zeros’,

gam
m

a_diag_initializer=
<

function
sqrt_init>

,
gam

m
a_off_initializer=

’zeros’,
kernel_regularizer=

N
one,

bias_regularizer=
N

one,
gam

m
a_diag_regularizer=

N
one,

gam
m

a_off_regularizer=
N

one,
activ-

ity_regularizer=
N

one,
kernel_constraint=

N
one,

bias_constraint=
N

one,
gam

m
a_diag_constraint=

N
one,

gam
m

a_off_constraint=
N

one,
init_criterion=

’he’,
seed=

N
one,

spectral_param
etrization=

False,
trans-

posed=
False,epsilon=

1e-07,**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

A
bstractnD

com
plex

convolution
layer.

T
his

layer
creates

a
com

plex
convolution

kernelthatis
convolved

w
ith

the
layer

inputto
produce

a
tensor

of
outputs.Ifuse_bias

is
True,a

bias
vectoris

created
and

added
to

the
outputs.Finally,ifactivation

is
notN

one,
itis

applied
to

the
outputs

as
w

ell.

A
rgum

ents:

rank:Integer,the
rank

ofthe
convolution,e.g.,“2”

for
2D

convolution.

filters:Integer,the
dim

ensionality
ofthe

outputspace,i.e.,the
num

berofcom
plex

feature
m

aps.
Itis

also
the

effective
num

ber
of

feature
m

aps
for

each
of

the
realand

im
aginary

parts.
(I.e.,the

num
ber

ofcom
plex

filters
in

the
convolution)T

he
totaleffective

num
beroffilters

is
2

x
filters.

kernel_size:A
n

integer
or

tuple/listofn
integers,specifying

the
dim

ensions
of

the
convolution

w
in-

dow
.

strides:A
n

integer
or

tuple/listofn
integers,specifying

the
strides

of
the

convolution.
Specifying

any
stride

value
!=

1
is

incom
patible

w
ith

specifying
any

dilation_rate
value

!=
1.

padding:
O

ne
of

“valid”
or

“sam
e”

(case-insensitive).
data_form

at:
A

string,one
of

channels_last(de-
fault)or

channels_first.T
he

ordering
ofthe

dim
ensions

in
the

inputs.channels_lastcorresponds
to

inputs
w

ith
shape

(batch,...,channels)
w

hile
channels_firstcorresponds

to
inputs

w
ith

shape
(batch,

channels,
...).

It
defaults

to
the

im
age_data_form

at
value

found
in

your
K

eras
config

file
at

~/.keras/keras.json.Ifyou
neversetit,then

itw
illbe

“channels_last”.

dilation_rate:A
n

integer
or

tuple/listofn
integers,specifying

the
dilation

rate
to

use
for

dilated
con-

volution.
C

urrently,
specifying

any
dilation_rate

value
!=

1
is

incom
patible

w
ith

specifying
any

strides
value

!=
1.

activation:A
ctivation

function
to

use
(see

keras.activations).Ifyou
don’tspecify

anything,no
activa-

tion
is

applied
(i.e.,“linear”

activation:a(x)=
x).

use_bias:
B

oolean,w
hether

the
layer

uses
a

bias
vector.

norm
alize_w

eight:
B

oolean,w
hether

the
layer

norm
alizes

its
com

plex

6
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K
eras

C
om

plex

w
eights

before
convolving

the
com

plex
input.

T
he

com
plex

norm
alization

perform
ed

is
sim

ilar
to

the
one

for
the

batchnorm
.

E
ach

of
the

com
plex

kernels
is

centred
and

m
ultiplied

by
the

inverse
square

rootofthe
covariance

m
atrix.

T
hen

a
com

plex
m

ultiplication
is

perform
ed

as
the

norm
alized

w
eights

are
m

ultiplied
by

the
com

plex
scaling

factorgam
m

a.

kernel_initializer:Initializer
for

the
com

plex
kernelw

eights
m

atrix.
B

y
default

it
is

‘com
plex’.

T
he

‘com
plex_independent’

and
the

usual
initializers

could
also

be
used.

(See
keras.initializers

and
init.py).

bias_initializer:Initializer
for

the
biasvector

(see
keras.initializers).

kernel_regularizer:R
egularizer

function
applied

to
the

kernel
w

eights
m

atrix
(see

keras.regularizers).

bias_regularizer:R
egularizer

function
applied

to
the

biasvector
(see

keras.regularizers).

activity_regularizer:R
egularizer

function
applied

to
the

outputofthe
layer

(its
“activation”).

(See
keras.regularizers).

kernel_constraint:C
onstraintfunction

applied
to

the
kernelm

atrix
(see

keras.constraints).

bias_constraint:C
onstraintfunction

applied
to

the
biasvector

(see
keras.constraints).

spectral_param
etrization:B

oolean,w
hether

or
notto

use
a

spectral
param

etrization
of

the
param

e-
ters.

transposed:B
oolean,w

hetherornotto
use

transposed
convolution

b
u
i
l
d
(

input_shape)

c
a
l
l
(

inputs,**kw
args)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
o
m
p
u
t
e
_
o
u
t
p
u
t
_
s
h
a
p
e
(

input_shape)
C

om
putes

the
outputshape

ofthe
layer.

A
ssum

es
thatthe

layerw
illbe

builtto
m

atch
thatinputshape

provided.

#
A

rgum
ents

input_shape:Shape
tuple

(tuple
ofintegers)

or
list

of
shape

tuples
(one

per
output

tensor
of

the
layer).Shape

tuples
can

include
N

one
forfree

dim
ensions,instead

ofan
integer.

#
R

eturns
A

n
outputshape

tuple.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

1.3.
com

plexnn
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K
eras

C
om

plex

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
1
D
(

filters,
kernel_size,

strides=
1,

padding=
’valid’,

dila-
tion_rate=

1,
activation=

N
one,

use_bias=
True,

ker-
nel_initializer=

’com
plex’,

bias_initializer=
’zeros’,

kernel_regularizer=
N

one,
bias_regularizer=

N
one,

activity_regularizer=
N

one,
kernel_constraint=

N
one,

bias_constraint=
N

one,
seed=

N
one,

init_criterion=
’he’,

spectral_param
etrization=

False,
transposed=

False,
**kw

args)
B

ases:
c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v

1D
com

plex
convolution

layer.T
hislayercreatesa

com
plex

convolution
kernelthatisconvolved

w
ith

a
com

plex
inputlayerovera

single
com

plex
spatial(ortem

poral)dim
ension

to
produce

a
com

plex
outputtensor.Ifuse_bias

is
True,a

bias
vectoris

created
and

added
to

the
com

plex
output.Finally,ifactivation

is
notN

one,itis
applied

each
ofthe

realand
im

aginary
parts

ofthe
output.W

hen
using

this
layeras

the
firstlayerin

a
m

odel,provide
an

input_shape
argum

ent(tuple
ofintegers

orN
one,e.g.(10,128)forsequences

of10
vectors

of128-dim
ensional

vectors,or(N
one,128)forvariable-length

sequences
of128-dim

ensionalvectors.#
A

rgum
ents

filters:Integer,the
dim

ensionality
ofthe

outputspace,i.e,
the

num
ber

of
com

plex
feature

m
aps.

Itis
also

the
effective

num
beroffeature

m
aps

foreach
ofthe

realand
im

aginary
parts.(i.e.the

num
berofcom

plex
filters

in
the

convolution)T
he

totaleffective
num

beroffilters
is

2
x

filters.

kernel_size:A
n

integer
or

tuple/listofn
integers,specifying

the
dim

ensions
of

the
convolution

w
indow

.

strides:A
n

integer
or

tuple/listofa
single

integer,
specifying

the
stride

length
ofthe

convolution.
Specifying

any
stride

value
!=

1
is

incom
patible

w
ith

specifying
any

dilation_rate
value

!=
1.

padding:O
ne

of“valid”,“causal”
or

“sam
e”

(case-insensitive).
“causal”

results
in

causal
(di-

lated)
convolutions,e.g.

output[t]
does

notdepend
on

input[t+1:].
U

sefulw
hen

m
odeling

tem
-

poraldata
w

here
the

m
odelshould

notviolate
the

tem
poralorder.See

[W
aveN

et:
A

G
enerative

M
odelforR

aw
A

udio,section
2.1](https://arxiv.org/abs/1609.03499).

dilation_rate:an
integer

or
tuple/listofa

single
integer,specifying

the
dilation

rate
to

use
fordi-

lated
convolution.C

urrently,specifying
any

dilation_rate
value

!=
1

is
incom

patible
w

ith
spec-

ifying
any

strides
value

!=
1.

activation:A
ctivation

function
to

use
(see

keras.activations).
If

you
don’t

specify
anything,

no
activation

is
applied

(ie.“linear”
activation:a(x)=

x).

use_bias:
B

oolean,w
hether

the
layer

uses
a

bias
vector.

norm
alize_w

eight:
B

oolean,w
hether

the
layernorm

alizes
its

com
plex

w
eights

before
convolving

the
com

plex
input.

T
he

com
plex

norm
alization

perform
ed

is
sim

ilar
to

the
one

for
the

batchnorm
.

E
ach

of
the

com
plex

kernels
are

centred
and

m
ulti-

plied
by

the
inverse

square
root

of
covariance

m
atrix.

T
hen,

a
com

plex
m

ultiplication
is

perfrom
ed

as
the

norm
alized

w
eights

are
m

ultiplied
by

the
com

plex
scaling

factorgam
m

a.

kernel_initializer:Initializerforthe
com

plex
kernelw

eights
m

atrix.

B
y

defaultitis
‘com

plex’.T
he

‘com
plex_independent’and

the
usualinitializers

could
also

be
used.(see

keras.initializers
and

init.py).

bias_initializer:Initializer
for

the
biasvector

(see
keras.initializers).

kernel_regularizer:R
egularizer

function
applied

to
the

kernel
w

eights
m

atrix
(see

keras.regularizers).

bias_regularizer:R
egularizer

function
applied

to
the

biasvector
(see

keras.regularizers).

activity_regularizer:R
egularizer

function
applied

to
the

output
of

the
layer

(its
“activation”).

(see
keras.regularizers).
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C
om

plex

kernel_constraint:C
onstraintfunction

applied
to

the
kernelm

atrix
(see

keras.constraints).

bias_constraint:C
onstraintfunction

applied
to

the
biasvector

(see
keras.constraints).

spectral_param
etrization:W

hether
or

notto
use

a
spectral

param
etrization

ofthe
param

eters.

transposed:B
oolean,w

hetherornotto
use

transposed
convolution

#
Inputshape

3D
tensorw

ith
shape:(batch_size,steps,input_dim

)

#
O

utputshape
3D

tensorw
ith

shape:
(batch_size,new

_steps,2
x

filters)steps
value

m
ighthave

changed
due

to
padding

orstrides.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

c
l
a
s
s
c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
2
D
(

filters,
kernel_size,

strides=
(1,

1),
padding=

’valid’,
data_form

at=
N

one,
dilation_rate=

(1,
1),

activa-
tion=

N
one,

use_bias=
True,

kernel_initializer=
’com

plex’,
bias_initializer=

’zeros’,
kernel_regularizer=

N
one,

bias_regularizer=
N

one,
activity_regularizer=

N
one,

ker-
nel_constraint=

N
one,bias_constraint=

N
one,seed=

N
one,

init_criterion=
’he’,

spectral_param
etrization=

False,
transposed=

False,**kw
args)

B
ases:

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v

2D
C

om
plex

convolution
layer(e.g.spatialconvolution

overim
ages).T

his
layercreates

a
com

plex
convolution

kernelthatis
convolved

w
ith

a
com

plex
inputlayer

to
produce

a
com

plex
outputtensor.

If
use_bias

is
True,

a
com

plex
bias

vector
is

created
and

added
to

the
outputs.

Finally,
if

activation
is

not
N

one,
it

is
applied

to
both

the
realand

im
aginary

parts
of

the
output.

W
hen

using
this

layer
as

the
firstlayer

in
a

m
odel,provide

the
keyw

ord
argum

ent
input_shape

(tuple
of

integers,does
notinclude

the
sam

ple
axis),e.g.

input_shape=
(128,

128,3)for128x128
R

G
B

pictures
in

data_form
at=

”channels_last”.#
A

rgum
ents

filters:Integer,the
dim

ensionality
ofthe

com
plex

outputspace
(i.e,the

num
bercom

plex
feature

m
aps

in
the

convolution).T
he

totaleffective
num

beroffilters
orfeature

m
aps

is
2

x
filters.

kernel_size:A
n

integer
or

tuple/listof2
integers,specifying

the
w

idth
and

heightofthe
2D

con-
volution

w
indow

.C
an

be
a

single
integerto

specify
the

sam
e

value
forallspatialdim

ensions.

strides:A
n

integer
or

tuple/listof2
integers,

specifying
the

strides
of

the
convolution

along
the

w
idth

and
height.

C
an

be
a

single
integer

to
specify

the
sam

e
value

for
allspatialdim

ensions.
Specifying

any
stride

value
!=

1
is

incom
patible

w
ith

specifying
any

dilation_rate
value

!=
1.

padding:one
of“valid”

or“sam
e”

(case-insensitive).data_form
at:A

string,

one
of

channels_last(default)
or

channels_first.
T

he
ordering

of
the

dim
ensions

in
the

in-
puts.channels_lastcorresponds

to
inputs

w
ith

shape
(batch,height,w

idth,channels)w
hile

channels_firstcorresponds
to

inputs
w

ith
shape

(batch,channels,height,w
idth).Itdefaults

to
the

im
age_data_form

at
value

found
in

your
K

eras
config

file
at

~/.keras/keras.json.
If

you
neversetit,then

itw
illbe

“channels_last”.

1.3.
com

plexnn
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K
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C
om

plex

dilation_rate:an
integer

or
tuple/listof2

integers,specifying
the

dilation
rate

to
use

for
dilated

convolution.
C

an
be

a
single

integer
to

specify
the

sam
e

value
for

allspatialdim
ensions.

C
ur-

rently,specifying
any

dilation_rate
value

!=
1

is
incom

patible
w

ith
specifying

any
stride

value
!=

1.

activation:A
ctivation

function
to

use
(see

keras.activations).
If

you
don’t

specify
anything,

no
activation

is
applied

(ie.“linear”
activation:a(x)=

x).

use_bias:
B

oolean,w
hether

the
layer

uses
a

bias
vector.

norm
alize_w

eight:
B

oolean,w
hether

the
layernorm

alizes
its

com
plex

w
eights

before
convolving

the
com

plex
input.

T
he

com
plex

norm
alization

perform
ed

is
sim

ilar
to

the
one

for
the

batchnorm
.

E
ach

of
the

com
plex

kernels
are

centred
and

m
ulti-

plied
by

the
inverse

square
root

of
covariance

m
atrix.

T
hen,

a
com

plex
m

ultiplication
is

perfrom
ed

as
the

norm
alized

w
eights

are
m

ultiplied
by

the
com

plex
scaling

factorgam
m

a.

kernel_initializer:Initializerforthe
com

plex
kernelw

eights
m

atrix.

B
y

defaultitis
‘com

plex’.T
he

‘com
plex_independent’and

the
usualinitializers

could
also

be
used.(see

keras.initializers
and

init.py).

bias_initializer:Initializer
for

the
biasvector

(see
keras.initializers).

kernel_regularizer:R
egularizer

function
applied

to
the

kernel
w

eights
m

atrix
(see

keras.regularizers).

bias_regularizer:R
egularizer

function
applied

to
the

biasvector
(see

keras.regularizers).

activity_regularizer:R
egularizer

function
applied

to
the

output
of

the
layer

(its
“activation”).

(see
keras.regularizers).

kernel_constraint:C
onstraintfunction

applied
to

the
kernelm

atrix
(see

keras.constraints).

bias_constraint:C
onstraintfunction

applied
to

the
biasvector

(see
keras.constraints).

spectral_param
etrization:W

hether
or

notto
use

a
spectral

param
etrization

ofthe
param

eters.

transposed:B
oolean,w

hetherornotto
use

transposed
convolution

#
Inputshape

4D
tensor

w
ith

shape:
(sam

ples,
channels,

row
s,

cols)
if

data_form
at=’channels_first’

or
4D

tensorw
ith

shape:(sam
ples,row

s,cols,channels)ifdata_form
at=’channels_last’.

#
O

utputshape
4D

tensor
w

ith
shape:

(sam
ples,

2
x

filters,
new

_row
s,

new
_cols)

if
data_form

at=’channels_first’
or

4D
tensor

w
ith

shape:
(sam

ples,
new

_row
s,

new
_cols,

2
x

filters)
if

data_form
at=’channels_last’.row

s
and

cols
values

m
ighthave

changed
due

to
padding.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

10
C

hapter
1.

C
ontents



K
eras

C
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plex

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
3
D
(

filters,
kernel_size,

strides=
(1,

1,
1),

padding=
’valid’,

data_form
at=

N
one,

dilation_rate=
(1,

1,
1),

activa-
tion=

N
one,

use_bias=
True,

kernel_initializer=
’com

plex’,
bias_initializer=

’zeros’,
kernel_regularizer=

N
one,

bias_regularizer=
N

one,
activity_regularizer=

N
one,

ker-
nel_constraint=

N
one,bias_constraint=

N
one,seed=

N
one,

init_criterion=
’he’,

spectral_param
etrization=

False,
transposed=

False,**kw
args)

B
ases:

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v

3D
convolution

layer
(e.g.

spatialconvolution
over

volum
es).

T
his

layer
creates

a
com

plex
convolution

kernel
thatis

convolved
w

ith
a

com
plex

layerinputto
produce

a
com

plex
outputtensor.Ifuse_bias

is
True,a

com
plex

bias
vector

is
created

and
added

to
the

outputs.
Finally,if

activation
is

not
N

one,itis
applied

to
each

of
the

realand
im

aginary
parts

ofthe
output.W

hen
using

this
layeras

the
firstlayerin

a
m

odel,provide
the

keyw
ord

argum
entinput_shape

(tuple
ofintegers,does

notinclude
the

sam
ple

axis),e.g.input_shape=
(2,128,128,128,

3)for128x128x128
volum

es
w

ith
3

channels,in
data_form

at=
”channels_last”.#

A
rgum

ents

filters:Integer,the
dim

ensionality
ofthe

com
plex

outputspace
(i.e,the

num
bercom

plex
feature

m
aps

in
the

convolution).T
he

totaleffective
num

beroffilters
orfeature

m
aps

is
2

x
filters.

kernel_size:A
n

integer
or

tuple/listof3
integers,specifying

the
w

idth
and

heightofthe
3D

con-
volution

w
indow

.C
an

be
a

single
integerto

specify
the

sam
e

value
forallspatialdim

ensions.

strides:A
n

integer
or

tuple/listof3
integers,specifying

the
strides

ofthe
convolution

along
each

spatialdim
ension.

C
an

be
a

single
integer

to
specify

the
sam

e
value

for
allspatialdim

ensions.
Specifying

any
stride

value
!=

1
is

incom
patible

w
ith

specifying
any

dilation_rate
value

!=
1.

padding:one
of“valid”

or“sam
e”

(case-insensitive).data_form
at:A

string,

one
of

channels_last(default)
or

channels_first.
T

he
ordering

of
the

dim
ensions

in
the

in-
puts.

channels_last
corresponds

to
inputs

w
ith

shape
(batch,spatial_dim

1,spatial_dim
2,

spatial_dim
3,channels)w

hile
channels_firstcorrespondsto

inputsw
ith

shape
(batch,chan-

nels,spatial_dim
1,spatial_dim

2,spatial_dim
3).Itdefaultsto

the
im

age_data_form
atvalue

found
in

your
K

eras
config

file
at

~/.keras/keras.json.
If

you
never

set
it,

then
it

w
ill

be
“channels_last”.

dilation_rate:an
integer

or
tuple/listof3

integers,specifying
the

dilation
rate

to
use

for
dilated

convolution.
C

an
be

a
single

integer
to

specify
the

sam
e

value
for

allspatialdim
ensions.

C
ur-

rently,specifying
any

dilation_rate
value

!=
1

is
incom

patible
w

ith
specifying

any
stride

value
!=

1.

activation:A
ctivation

function
to

use
(see

keras.activations).
If

you
don’t

specify
anything,

no
activation

is
applied

(ie.“linear”
activation:a(x)=

x).

use_bias:
B

oolean,w
hether

the
layer

uses
a

bias
vector.

norm
alize_w

eight:
B

oolean,w
hether

the
layernorm

alizes
its

com
plex

w
eights

before
convolving

the
com

plex
input.

T
he

com
plex

norm
alization

perform
ed

is
sim

ilar
to

the
one

for
the

batchnorm
.

E
ach

of
the

com
plex

kernels
are

centred
and

m
ulti-

plied
by

the
inverse

square
root

of
covariance

m
atrix.

T
hen,

a
com

plex
m

ultiplication
is

perfrom
ed

as
the

norm
alized

w
eights

are
m

ultiplied
by

the
com

plex
scaling

factorgam
m

a.

kernel_initializer:Initializer
for

the
com

plex
kernelw

eights
m

atrix.
B

y
default

it
is

‘com
plex’.

T
he

‘com
plex_independent’

and
the

usualinitializers
could

also
be

used.
(see

keras.initializers
and

init.py).

bias_initializer:Initializer
for

the
biasvector

(see
keras.initializers).

1.3.
com
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C
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plex

kernel_regularizer:R
egularizer

function
applied

to
the

kernel
w

eights
m

atrix
(see

keras.regularizers).

bias_regularizer:R
egularizer

function
applied

to
the

biasvector
(see

keras.regularizers).

activity_regularizer:R
egularizer

function
applied

to
the

output
of

the
layer

(its
“activation”).

(see
keras.regularizers).

kernel_constraint:C
onstraintfunction

applied
to

the
kernelm

atrix
(see

keras.constraints).

bias_constraint:C
onstraintfunction

applied
to

the
biasvector

(see
keras.constraints).

spectral_param
etrization:W

hether
or

notto
use

a
spectral

param
etrization

ofthe
param

eters.

transposed:B
oolean,w

hetherornotto
use

transposed
convolution

#
Inputshape

5D
tensor

w
ith

shape:
(sam

ples,
channels,

conv_dim
1,

conv_dim
2,

conv_dim
3)

if
data_form

at=’channels_first’
or

5D
tensor

w
ith

shape:
(sam

ples,
conv_dim

1,
conv_dim

2,
conv_dim

3,
channels)ifdata_form

at=’channels_last’.

#
O

utputshape
5D

tensor
w

ith
shape:

(sam
ples,

2
x

filters,
new

_conv_dim
1,

new
_conv_dim

2,
new

_conv_dim
3)

if
data_form

at=’channels_first’
or

5D
tensor

w
ith

shape:
(sam

ples,
new

_conv_dim
1,

new
_conv_dim

2,
new

_conv_dim
3,

2
x

filters)
if

data_form
at=’channels_last’.

new
_conv_dim

1,
new

_conv_dim
2

and
new

_conv_dim
3

values
m

ighthave
changed

due
to

padding.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
o
l
u
t
i
o
n
1
D

alias
of
c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
1
D

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
o
l
u
t
i
o
n
2
D

alias
of
c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
2
D

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
o
l
u
t
i
o
n
3
D

alias
of
c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
C
o
m
p
l
e
x
C
o
n
v
3
D

c
l
a
s
s
c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
W
e
i
g
h
t
N
o
r
m
_
C
o
n
v
(

gam
m

a_initializer=
’ones’,

gam
m

a_regularizer=
N

one,
gam

m
a_constraint=

N
one,epsilon=

1e-07,**kw
args)

B
ases:

k
e
r
a
s
.
l
a
y
e
r
s
.
c
o
n
v
o
l
u
t
i
o
n
a
l
.
_
C
o
n
v

b
u
i
l
d
(

input_shape)
C

reates
the

layerw
eights.

M
ustbe

im
plem

ented
on

alllayers
thathave

w
eights.

#
A

rgum
ents

input_shape:K
erastensor

(future
inputto

layer)
or

list/tuple
of

K
eras

tensors
to

reference
for

w
eightshape

com
putations.

c
a
l
l
(

inputs)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.
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K
eras

C
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plex

#
R

eturns
A

tensororlist/tuple
oftensors.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
c
o
n
v
2
d
_
t
r
a
n
s
p
o
s
e
(

inputs,
filter,

kernel_size=
N

one,
filters=

N
one,

strides=
(1,

1),
padding=

’SA
M

E
’,

output_padding=
N

one,
data_form

at=
’channels_last’)

C
om

patibility
layerforK

.conv2d_transpose

Take
a

filterdefined
forforw

ard
convolution

and
adjusts

itfora
transposed

convolution.

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
c
o
n
v
_
t
r
a
n
s
p
o
s
e
_
o
u
t
p
u
t
_
l
e
n
g
t
h
(

input_length,
filter_size,

padding,
stride,

di-
lation=

1,output_padding=
N

one)
R

earrange
argum

ents
forcom

patibility
w

ith
conv_output_length.

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
i
f
f
t
(

f)
Stub

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
i
f
f
t
2
(

f)
Stub

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
s
a
n
i
t
i
z
e
d
I
n
i
t
G
e
t
(

init)

c
o
m
p
l
e
x
n
n
.
c
o
n
v
.
s
a
n
i
t
i
z
e
d
I
n
i
t
S
e
r
(

init)

com
plexnn.dense

m
odule

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
d
e
n
s
e
.
C
o
m
p
l
e
x
D
e
n
s
e
(

units,
activation=

N
one,

use_bias=
True,

init_criterion=
’he’,

kernel_initializer=
’com

plex’,
bias_initializer=

’zeros’,
kernel_regularizer=

N
one,

bias_regularizer=
N

one,
activity_regularizer=

N
one,

ker-
nel_constraint=

N
one,bias_constraint=

N
one,seed=

N
one,

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

R
egularcom

plex
densely-connected

N
N

layer.
D

ense
im

plem
ents

the
operation:

real_preact=
dot(real_input,

real_kernel)
-

dot(im
ag_input,

im
ag_kernel)

im
ag_preact

=
dot(real_input,

im
ag_kernel)

+
dot(im

ag_input,
real_kernel)

output
=

activation(K
.concatenate([real_preact,

im
ag_preact])

+
bias)

w
here

activation
is

the
elem

ent-w
ise

activation
function

passed
as

the
activation

argum
ent,kernelis

a
w

eights
m

atrix
created

by
the

layer,and
bias

is
a

bias
vectorcreated

by
the

layer(only
applicable

ifuse_bias
is

True).N
ote:ifthe

inputto
the

layerhas
a

rank
greaterthan

2,then
A

N
E

R
R

O
R

M
E

SSA
G

E
IS

PR
IN

T
E

D
.#

A
rgum

ents

units:Positive
integer,dim

ensionality
ofeach

ofthe
realpart

and
the

im
aginary

part.
Itis

actu-
aly

the
num

berofcom
plex

units.

activation:A
ctivation

function
to

use
(see

keras.activations).
If

you
don’t

specify
anything,

no
activation

is
applied

(ie.“linear”
activation:a(x)=

x).

use_bias:B
oolean,w

hetherthe
layeruses

a
bias

vector.kernel_initializer:Initializerforthe
com

plex
kernelw

eights
m

atrix.

1.3.
com

plexnn
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y

default
it

is
‘com

plex’.
and

the
usual

initializers
could

also
be

used.
(see

keras.initializers
and

init.py).

bias_initializer:Initializer
for

the
biasvector

(see
keras.initializers).

kernel_regularizer:R
egularizer

function
applied

to
the

kernel
w

eights
m

atrix
(see

keras.regularizers).

bias_regularizer:R
egularizer

function
applied

to
the

biasvector
(see

keras.regularizers).

activity_regularizer:R
egularizer

function
applied

to
the

output
of

the
layer

(its
“activation”).

(see
keras.regularizers).

kernel_constraint:C
onstraintfunction

applied
to

the
kernelm

atrix
(see

keras.constraints).

bias_constraint:C
onstraintfunction

applied
to

the
biasvector

(see
keras.constraints).

#
Inputshape

a
2D

inputw
ith

shape
(batch_size,input_dim

).

#
O

utputshape
For

a
2D

inputw
ith

shape
(batch_size,input_dim

),the
outputw

ould
have

shape
(batch_size,

units).

b
u
i
l
d
(

input_shape)
C

reates
the

layerw
eights.

M
ustbe

im
plem

ented
on

alllayers
thathave

w
eights.

#
A

rgum
ents

input_shape:K
erastensor

(future
inputto

layer)
or

list/tuple
of

K
eras

tensors
to

reference
for

w
eightshape

com
putations.

c
a
l
l
(

inputs)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
o
m
p
u
t
e
_
o
u
t
p
u
t
_
s
h
a
p
e
(

input_shape)
C

om
putes

the
outputshape

ofthe
layer.

A
ssum

es
thatthe

layerw
illbe

builtto
m

atch
thatinputshape

provided.

#
A

rgum
ents

input_shape:Shape
tuple

(tuple
ofintegers)

or
list

of
shape

tuples
(one

per
output

tensor
of

the
layer).Shape

tuples
can

include
N

one
forfree

dim
ensions,instead

ofan
integer.

#
R

eturns
A

n
outputshape

tuple.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.
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K
eras

C
om

plex

com
plexnn.fftm

odule

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
f
f
t
.
F
F
T
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
f
f
t
.
F
F
T
2
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
f
f
t
.
I
F
F
T
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
f
f
t
.
I
F
F
T
2
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
o
m
p
l
e
x
n
n
.
f
f
t
.
f
f
t
(

z)

c
o
m
p
l
e
x
n
n
.
f
f
t
.
f
f
t
2
(

x)

c
o
m
p
l
e
x
n
n
.
f
f
t
.
i
f
f
t
(

z)

c
o
m
p
l
e
x
n
n
.
f
f
t
.
i
f
f
t
2
(

x)

com
plexnn.initm

odule

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
C
o
m
p
l
e
x
I
n
d
e
p
e
n
d
e
n
t
F
i
l
t
e
r
s
(

kernel_size,
input_dim

,
w

eight_dim
,

nb_filters=
N

one,
criterion=

’glorot’,
seed=

N
one)

B
ases:

k
e
r
a
s
.
i
n
i
t
i
a
l
i
z
e
r
s
.
I
n
i
t
i
a
l
i
z
e
r

g
e
t
_
c
o
n
f
i
g
(
)

1.3.
com
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K
eras

C
om

plex

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
C
o
m
p
l
e
x
I
n
i
t
(

kernel_size,
input_dim

,
w

eight_dim
,

nb_filters=
N

one,
crite-

rion=
’glorot’,seed=

N
one)

B
ases:

k
e
r
a
s
.
i
n
i
t
i
a
l
i
z
e
r
s
.
I
n
i
t
i
a
l
i
z
e
r

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
I
n
d
e
p
e
n
d
e
n
t
F
i
l
t
e
r
s
(

kernel_size,
input_dim

,
w

eight_dim
,

nb_filters=
N

one,criterion=
’glorot’,seed=

N
one)

B
ases:

k
e
r
a
s
.
i
n
i
t
i
a
l
i
z
e
r
s
.
I
n
i
t
i
a
l
i
z
e
r

g
e
t
_
c
o
n
f
i
g
(
)

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
S
q
r
t
I
n
i
t

B
ases:

k
e
r
a
s
.
i
n
i
t
i
a
l
i
z
e
r
s
.
I
n
i
t
i
a
l
i
z
e
r

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
c
o
m
p
l
e
x
_
i
n
i
t

alias
of
c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
C
o
m
p
l
e
x
I
n
i
t

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
i
n
d
e
p
e
n
d
e
n
t
_
f
i
l
t
e
r
s

alias
of
c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
I
n
d
e
p
e
n
d
e
n
t
F
i
l
t
e
r
s

c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
s
q
r
t
_
i
n
i
t

alias
of
c
o
m
p
l
e
x
n
n
.
i
n
i
t
.
S
q
r
t
I
n
i
t

com
plexnn.norm

m
odule

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
n
o
r
m
.
C
o
m
p
l
e
x
L
a
y
e
r
N
o
r
m
(

epsilon=
0.0001,

axis=
-1,

center=
True,

scale=
True,

beta_initializer=
’zeros’,

gam
m

a_diag_initializer=
<

function
sqrt_init>

,
gam

m
a_off_initializer=

’zeros’,
beta_regularizer=

N
one,

gam
m

a_diag_regularizer=
N

one,
gam

m
a_off_regularizer=

N
one,

beta_constraint=
N

one,
gam

m
a_diag_constraint=

N
one,

gam
m

a_off_constraint=
N

one,**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

b
u
i
l
d
(

input_shape)
C

reates
the

layerw
eights.

M
ustbe

im
plem

ented
on

alllayers
thathave

w
eights.

#
A

rgum
ents

input_shape:K
erastensor

(future
inputto

layer)
or

list/tuple
of

K
eras

tensors
to

reference
for

w
eightshape

com
putations.

c
a
l
l
(

inputs)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).
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K
eras

C
om

plex

#
R

eturns
Python

dictionary.

c
l
a
s
s
c
o
m
p
l
e
x
n
n
.
n
o
r
m
.
L
a
y
e
r
N
o
r
m
a
l
i
z
a
t
i
o
n
(

epsilon=
0.0001,

axis=
-1,

beta_init=
’zeros’,

gam
m

a_init=
’ones’,

gam
m

a_regularizer=
N

one,
beta_regularizer=

N
one,**kw

args)
B

ases:
k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

b
u
i
l
d
(

input_shape)
C

reates
the

layerw
eights.

M
ustbe

im
plem

ented
on

alllayers
thathave

w
eights.

#
A

rgum
ents

input_shape:K
erastensor

(future
inputto

layer)
or

list/tuple
of

K
eras

tensors
to

reference
for

w
eightshape

com
putations.

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

g
e
t
_
c
o
n
f
i
g
(
)

R
eturns

the
config

ofthe
layer.

A
layerconfig

is
a

Python
dictionary

(serializable)containing
the

configuration
ofa

layer.T
he

sam
e

layer
can

be
reinstantiated

later(w
ithoutits

trained
w

eights)from
this

configuration.

T
he

config
of

a
layer

does
not

include
connectivity

inform
ation,

nor
the

layer
class

nam
e.

T
hese

are
handled

by
N

etw
ork

(one
layerofabstraction

above).

#
R

eturns
Python

dictionary.

c
o
m
p
l
e
x
n
n
.
n
o
r
m
.
l
a
y
e
r
n
o
r
m
(

x,axis,epsilon,gam
m

a,beta)

com
plexnn.poolm

odule

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
p
o
o
l
.
S
p
e
c
t
r
a
l
P
o
o
l
i
n
g
1
D
(

topf=
(0,))

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
p
o
o
l
.
S
p
e
c
t
r
a
l
P
o
o
l
i
n
g
2
D
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

x,m
ask=

N
one)

T
his

is
w

here
the

layer’s
logic

lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

1.3.
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K
eras

C
om

plex

com
plexnn.utils

m
odule

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
G
e
t
A
b
s
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

inputs)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
o
m
p
u
t
e
_
o
u
t
p
u
t
_
s
h
a
p
e
(

input_shape)
C

om
putes

the
outputshape

ofthe
layer.

A
ssum

es
thatthe

layerw
illbe

builtto
m

atch
thatinputshape

provided.

#
A

rgum
ents

input_shape:Shape
tuple

(tuple
ofintegers)

or
list

of
shape

tuples
(one

per
output

tensor
of

the
layer).Shape

tuples
can

include
N

one
forfree

dim
ensions,instead

ofan
integer.

#
R

eturns
A

n
outputshape

tuple.

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
G
e
t
I
m
a
g
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

inputs)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
o
m
p
u
t
e
_
o
u
t
p
u
t
_
s
h
a
p
e
(

input_shape)
C

om
putes

the
outputshape

ofthe
layer.

A
ssum

es
thatthe

layerw
illbe

builtto
m

atch
thatinputshape

provided.

#
A

rgum
ents

input_shape:Shape
tuple

(tuple
ofintegers)

or
list

of
shape

tuples
(one

per
output

tensor
of

the
layer).Shape

tuples
can

include
N

one
forfree

dim
ensions,instead

ofan
integer.

#
R

eturns
A

n
outputshape

tuple.

c
l
a
s
s

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
G
e
t
R
e
a
l
(

**kw
args)

B
ases:

k
e
r
a
s
.
e
n
g
i
n
e
.
b
a
s
e
_
l
a
y
e
r
.
L
a
y
e
r

c
a
l
l
(

inputs)
T

his
is

w
here

the
layer’s

logic
lives.

#
A

rgum
ents

inputs:
Input

tensor,
or

list/tuple
of

input
tensors.

**kw
args:

A
dditional

keyw
ord

argu-
m

ents.

#
R

eturns
A

tensororlist/tuple
oftensors.

c
o
m
p
u
t
e
_
o
u
t
p
u
t
_
s
h
a
p
e
(

input_shape)
C

om
putes

the
outputshape

ofthe
layer.

A
ssum

es
thatthe

layerw
illbe

builtto
m

atch
thatinputshape

provided.

#
A

rgum
ents
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K
eras

C
om

plex

input_shape:Shape
tuple

(tuple
ofintegers)

or
list

of
shape

tuples
(one

per
output

tensor
of

the
layer).Shape

tuples
can

include
N

one
forfree

dim
ensions,instead

ofan
integer.

#
R

eturns
A

n
outputshape

tuple.

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
g
e
t
_
a
b
s
(

x)

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
g
e
t
_
i
m
a
g
p
a
r
t
(

x)

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
g
e
t
_
r
e
a
l
p
a
r
t
(

x)

c
o
m
p
l
e
x
n
n
.
u
t
i
l
s
.
g
e
t
p
a
r
t
_
o
u
t
p
u
t
_
s
h
a
p
e
(

input_shape)

M
odule

contents

1.4
H

ow
to

C
ontribute

1.5
Im

plem
entation

and
M

ath

C
om

plex
convolutional

netw
orks

provide
the

benefit
of

explicitly
m

odelling
the

phase
space

of
physical

system
s

[T
B

Z
+17].

T
he

com
plex

convolution
introduced

can
be

explicitly
im

plem
ented

as
convolutions

of
the

realand
com

-
plex

com
ponents

of
both

kernels
and

the
data.

A
com

plex-valued
data

m
atrix

in
cartesian

notation
is

defined
as

M
=

𝑀
ℜ
+
𝑖𝑀

ℑ
and

equally,the
com

plex-valued
convolutionalkernelis

defined
asK

=
𝐾

ℜ
+
𝑖𝐾

ℑ
.T

he
individual

coefficients
(𝑀

ℜ
,𝑀

ℑ
,𝐾

ℜ
,𝐾

ℑ
)

are
real-valued

m
atrices,considering

vectors
are

specialcases
of

m
atrices

w
ith

one
oftw

o
dim

ensions
being

one.

1.5.1
C
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plex
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onvolution

M
ath

T
he

m
ath

for
com

plex
convolutional

netw
orks

is
sim

ilar
to

real-valued
convolutions,w

ith
real-valued

convolutions
being:

∫︁
𝑓
(𝑦
)·𝑔

(𝑥
−
𝑦
)
𝑑
𝑦

w
hich

generalizes
to

com
plex-valued

function
on

R
𝑑:

(𝑓
*
𝑔
)(𝑥

)
= ∫︁

R
𝑑

𝑓
(𝑦
)𝑔
(𝑥

−
𝑦
)
𝑑
𝑦
= ∫︁

R
𝑑

𝑓
(𝑥

−
𝑦
)𝑔
(𝑦
)
𝑑
𝑦
,

in
orderforthe

integralto
exist,fand

g
need

to
decay

sufficiently
rapidly

atinfinity
[C

C
-B

Y
-SA

W
iki].

1.5.2
Im

plem
entation

Solving
the

convolution
of,im

plem
ented

by
[T

B
Z

+17],translated
to

keras
in

[D
C

19]

𝑀
′
=

𝐾
*
𝑀

=
(𝑀

ℜ
+
𝑖𝑀

ℑ
)*

(𝐾
ℜ
+
𝑖𝐾

ℑ
),

w
e

can
apply

the
distributivity

ofconvolutions
to

obtain

𝑀
′
=

{
𝑀

ℜ
*
𝐾

ℜ
−
𝑀

ℑ
*
𝐾

ℑ }
+
𝑖{𝑀

ℜ
*
𝐾

ℑ
+
𝑀

ℑ
*
𝐾

ℜ },

w
here

K
is

the
K

erneland
M

is
a

data
vector.

1.4.
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Z
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1.5.3
C

onsiderations

C
om

plex
convolutional

neural
netw

orks
learn

by
back-propagation.

[SSC
15]

state
that

the
activation

functions,
as
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ellas

the
loss

function
m

ustbe
com

plex
differentiable

(holom
orphic).

[T
B

Z
+17]

suggestthatem
ploying
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plex

losses
and

activation
functions

is
valid

forspeed,how
ever,refers

that[H
Y

12]show
thatcom

plex-valued
netw

orks
can

be
optim

ized
individually

w
ith

real-valued
loss

functions
and

contain
piecew

ise
real-valued

activations.
W

e
reim

ple-
m

entthe
code

[T
B

Z
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provides
in

keras
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ith
tensorflow
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provides
convenience

functions
im

plem
enting

a
m

ultitude
ofreal-valued

loss
functions

and
activations.

[C
C

-B
Y
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